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a b s t r a c t

Inverse modeling is a powerful tool for extracting information about the subsurface from geophysical
data. Geophysical inverse problems are inherently multidisciplinary, requiring elements from the re-
levant physics, numerical simulation, and optimization, as well as knowledge of the geologic setting, and
a comprehension of the interplay between all of these elements. The development and advancement of
inversion methodologies can be enabled by a framework that supports experimentation, is flexible and
extensible, and allows the knowledge generated to be captured and shared. The goal of this paper is to
propose a framework that supports many different types of geophysical forward simulations and de-
terministic inverse problems. Additionally, we provide an open source implementation of this framework
in Python called SIMPEG (Simulation and Parameter Estimation in Geophysics, http://simpeg.xyz). In-
cluded in SIMPEG are staggered grid, mimetic finite volume discretizations on a number of structured and
semi-structured meshes, convex optimization programs, inversion routines, model parameterizations,
useful utility codes, and interfaces to standard numerical solver packages. The framework and im-
plementation are modular, allowing the user to explore, experiment with, and iterate over a variety of
approaches to the inverse problem. SIMPEG provides an extensible, documented, and well-tested fra-
mework for inverting many types of geophysical data and thereby helping to answer questions in
geoscience applications. Throughout the paper we use a generic direct current resistivity problem to
illustrate the framework and functionality of SIMPEG.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and motivation

Geophysical surveys can be used to obtain information about
the subsurface as the responses that are measured depend on the
physical properties and contrasts in the earth. Inversions provide a
mathematical framework for constructing physical property
models consistent with the data collected by these surveys. The
data collected are finite in number while the physical property
distribution of the earth is continuous. Thus, inverting for a phy-
sical property model from geophysical data is an ill-posed pro-
blem, meaning that no unique solution explains the data. Fur-
thermore, the data may be contaminated with noise. Therefore,
the goal of a deterministic inversion is not only to find a model
consistent with the data, but must be to find the ‘best’ model that
is consistent with the data.1 The definition of ‘best’ requires the
incorporation of assumptions and a priori information, often in the
form of an understanding of the particular geologic setting or
structures (Constable et al., 1987; Oldenburg and Li, 2005; Lelièvre
et al., 2009). Solving the inverse problem involves many moving
pieces that must work together, including physical simulations,
optimization, linear algebra, and incorporation of geology. De-
terministic geophysical inversions have been extensively studied,
and many components and methodologies have become standard
practice. With increases in computational power and in-
strumentation quality, there is a greater drive to extract more in-
formation from the geophysical data. Additionally, geophysical
surveys are being applied in progressively more challenging en-
vironments. As a result, the geosciences are moving towards the
integration of geological, geophysical, and hydrological informa-
tion to better characterize the subsurface (e.g. Haber and Old-
enburg, 1997; Doetsch et al., 2010; Gao et al., 2012). This is a sci-
entifically and practically challenging task (Li and Oldenburg,
2000b; Lelièvre et al., 2009). These challenges, compounded with
inconsistencies between different data sets, often makes the in-
tegration and implementation complicated and/or non-re-
producible. The development of new methodologies to address
these challenges will build upon, as well as augment, standard
practices; this presupposes that researchers have access to con-
sistent, well-tested tools that can be extended, adapted and
combined.

There are many proprietary codes available that focus on effi-
cient algorithms and are optimized for a specific geophysical ap-
plication (e.g. Kelbert et al., 2014; Li and Key, 2007; Li and Old-
enburg, 1996b, 1998). These packages are effective for their in-
tended application, for example, a domain specific large-scale
1 Alternatively, the inverse problem can be formulated in a probabilistic fra-
mework, see for example Tarantola (2005) and Tarantola and Valette (1982). In this
paper we will focus our attention on the deterministic approach.
geophysical inversion or a tailored industry workflow. However,
many of these packages are ‘black-box’ algorithms, that is, they
cannot easily be interrogated or extended. As researchers, we re-
quire the ability to interrogate and extend ideas; this must be af-
forded by the tools that we use. Accessibility and extensibility are
the primary motivators for this work. Other disciplines have ap-
proached the development of these tools through open source
initiatives using interpreted languages, such as Python, for ex-
ample, Astropy in astronomy (Astropy Collaboration et al., 2013)
and SciPy in numerical computing (Jones et al., 2001). Interpreted
languages facilitate interactive development using scripting, vi-
sualization, testing, and interoperability with code in compiled
languages and existing libraries. Furthermore, many open source
initiatives have led to communities with hundreds of researchers
contributing and collaborating using social coding platforms, such
as GitHub (https://github.com). There are also initiatives in the
geophysical forward and inverse modeling community targeting
specific geophysical applications (cf. Hansen et al., 2013; Hewett
and Demanet, 2013; Uieda et al., 2014; Kelbert et al., 2014; Har-
baugh, 2005). We are interested in creating a community around
geophysical simulations and gradient based inversions. To create a
foundation on which to build a community, we require a com-
prehensive framework that is applicable across domains and upon
which researchers can readily develop their own tools and
methodologies. To support these goals, this framework must be
modular and its implementation must be easily extensible by
researchers.

The goal of this paper is to present a comprehensive framework
for simulation and gradient based parameter estimation in geo-
physics. The core ideas from a variety of geophysical inverse pro-
blems have been distilled to create this framework. We also pro-
vide an open source library written in Python called SIMPEG (Si-
mulation and Parameter Estimation in Geophysics, http://github.
com/simpeg/simpeg). Our implementation has core dependencies
on SciPy, NumPy, and Matplotlib, which are standard scientific
computing packages in Python (Jones et al., 2001; Van Rossum and
Drake, 1995; Oliphant, 2007; Hunter, 2007). SIMPEG includes
staggered grid, mimetic finite volume discretizations on structured
and semi-structured meshes. It interfaces to standard numerical
solver packages, convex optimization algorithms, model para-
meterizations, and visualization routines. We make use of Python's
object-oriented paradigm leading to modular code that is ex-
tensible through inheritance and subtype polymorphism. SIMPEG
follows a fully open source development paradigm (Feller and
Fitzgerald, 2000), and uses the permissive MIT license. Throughout
its development, we have focused on modularity, usability, doc-
umentation, and extensive unit-testing (Wilson et al., 2014; Hol-
scher et al., 2010; Kalderimis and Meyer, 2011; Merwin et al.,
2015). See the website http://simpeg.xyz for up-to-date code,

https://github.com
http://github.com/simpeg/simpeg
http://github.com/simpeg/simpeg
http://simpeg.xyz
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examples and documentation of this package; in addition see Kang
et al. (2014, 2015a,b), Kang and Oldenburg (2015), Heagy (2014),
and Heagy et al. (2015) for examples of research and use cases
throughout a variety of geophysical applications. We hope that the
organization, modularity, minimal dependencies, documentation,
and testing in SIMPEG will encourage reproducible research, co-
operation, and communication to help tackle some of the in-
herently multidisciplinary geophysical problems.

To guide the discussion, we start this paper by outlining gra-
dient based inversion methodology in Section 2. The inversion
methodology directly motivates the construction of the SIMPEG
framework, terminology, and software implementation which we
discuss in Section 3. We weave an example of Direct Current (DC)
resistivity throughout the discussion of the SIMPEG framework to
provide context for the choices made and highlight many of the
features of SIMPEG.
Fig. 1. Inversion methodology. Including inputs, implementation, evaluation and
interpretation.
2. Inversion methodology

Geophysical inverse problems are motivated by the desire to
extract information about the earth from measured data. A typical
geophysical datum can be written as

F dm , 1i i i[ ] + ϵ = ( )

where F is a forward simulation operator that incorporates details
of the relevant physical equations, sources, and survey design, m is
a generic symbol for the inversion model, ϵi is the noise that is
often assumed to have known statistics, and di is the observed
datum. In a typical geophysical survey we are provided with the
data d i N, 1i = … and some estimate of their uncertainties. The goal
is to recover the model, m, which is often a physical property. The
data provide only a finite number of inaccurate constraints upon
the sought model. Finding a model from the data alone is an ill-
posed problem since there is no unique model that explains the
data. Additional information must be included using prior in-
formation and assumptions, for example, downhole property logs,
structural orientation information, or known interfaces (Fullagar
et al., 2008; Li and Oldenburg, 2000a; Lelièvre et al., 2009). This
prior knowledge is crucial if we are to obtain an appropriate re-
presentation of the earth, and will be discussed in more detail in
Section 2.1.

Defining a well-posed inverse problem and solving it is a
complex task that requires many components that must interact. It
is helpful to view this task as a workflow in which various ele-
ments are explicitly identified and integrated. Fig. 1 outlines the
inversion methodology that consists of inputs, implementation,
and evaluation. The inputs are composed of the geophysical data,
the equations which are a mathematical description of the gov-
erning physics, and prior knowledge or assumptions about the
setting. The implementation consists of two broad categories: the
forward simulation and the inversion. The forward simulation is
the means by which we solve the governing equations given a
model and the inversion components evaluate and update this
model. We are considering a gradient based approach, which up-
dates the model through an optimization routine. The output of
this implementation is a model, which, prior to interpretation,
must be evaluated. This requires considering, and often re-asses-
sing, the choices and assumptions made in both the input and
implementation stages. In this paper we are primarily concerned
with the implementation component, that is, how the forward
simulation and inversion are carried out numerically. As a prelude
to discussing how the SIMPEG software is implemented, we step
through the elements in Fig. 1 considering a Tikhonov-style
inversion.
2.1. Inputs

Three sources of input are required prior to performing an in-
version: (1) the geophysical data and uncertainty estimates, (2) the
governing equations that connect the sought model with the ob-
servations, and (3) prior knowledge about the model and the
context of the problem.

2.1.1. Data and uncertainty estimates
At the heart of the inversion are the geophysical data that

consist of measurements over the earth. These data depend on the
type of survey, the physical property distribution, and the type and
location of the measurements. The details about the survey, for
example, the location, orientation and waveform of a source, and
which component of a particular wavefield is measured at a re-
ceiver, must be known. The data are contaminated with additive
noise which can sometimes be estimated by taking multiple rea-
lizations of the data. However, standard deviations of those rea-
lizations only provide a lower bound for the noise. For the inverse
problem, the uncertainty in the data must include not only this
additive noise, but also any discrepancy between the true earth
experiment and our mathematical representation of the data. This
requires accounting for mislocation of receivers and sources, poor
control of the transmitter waveform, electronic gains or filtering
applied to signals entering the receivers, incorrect dimensionality
in our mathematical model (e.g. working in 2D instead of 3D),
neglect of physics in our mathematical equations by introducing
assumptions (e.g. using a straight ray tomography vs. a full wa-
veform simulation in seismic), and discretization errors of our
mathematical equations.

2.1.2. Governing equations
The governing equations provide the connection between the

physical properties of the subsurface and the data we observe.
Most frequently, these are sets of partial differential equations
with specific boundary conditions. The governing equations, with
specified source terms, can be solved through numerical dis-
cretization using finite volume, finite element, or integral equation
techniques. Alternatively, they may also be solved through eva-
luations of analytic functions. Whichever approach is taken, it is
crucial that there exists some way to simulate the data response
given a model.
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2.1.3. Prior knowledge
If there is one model that acceptably fits the data then there are

infinitely many. Additional information is therefore required to
reduce the non-uniqueness. This can be geologic information,
petrophysical knowledge about the various rock types, borehole
logs, additional geophysical data sets, or inversion results. This
prior information can be used to construct reference models for
the inversion and also characterize features of the model, such as
whether it is best described by a smooth function or if it is dis-
continuous across interfaces. Physical property measurements can
be used to assign upper and lower bounds for a physical property
model at points in a volume or in various regions within our 3D
volume. The various types of information that are relevant to the
geologic and geophysical questions to be addressed must be
combined and translated into useful information for the inversion
(Lelièvre et al., 2009; Li et al., 2010).

2.2. Implementation

In this section we outline the components necessary to for-
mulate a well-posed inverse problem and solve it numerically.
Two major abilities are critical to running the inversion: (1) the
ability to simulate data and (2) the ability to assess and update the
model (Fig. 1).

2.2.1. Forward simulation
The ability to carry out an inversion presupposes the ability to

run a forward simulation and create predicted data given a phy-
sical property model. In forward simulation, we wish to compute
F m dpred[ ] = . The operator F simulates the specific measurements
taken in a geophysical survey using the governing equations. The
survey refers to all details regarding the field experiment that are
needed to simulate the data. The forward simulation of DC re-
sistivity data requires knowledge of the topography, the resistivity
of the earth, and the survey details including locations of the
current and potential electrodes, the source waveform, and the
units of the observations. To complete the simulation, we need to
solve our governing equations using the physical property model,
m, that is provided. In the DC resistivity experiment, our partial
differential equation with supplied boundary conditions is solved
with an appropriate numerical method, for example, finite vo-
lumes, finite elements, integral equations, or semi-analytic meth-
ods for 1D problems. In any case, we must discretize the earth onto
a numerical forward simulation mesh (meshF) that is appropriate.
The size of the cells will depend upon the structure of the physical
property model, topography, as well as the distance between
sources and receivers. Cells in meshF must be small enough, and
the domain large enough, so that sufficient numerical accuracy is
achieved. Proper mesh design is crucial so that numerical mod-
eling errors are below a prescribed threshold value (cf. Haber,
2015).

In general, we can write our governing equations in the form of

C m u, 0, 2( ) = ( )

where m is the modeled physical property, u are the fields and/or
fluxes. C is often given by a partial differential equation or a set of
partial differential equations. Information about the sources and
appropriate boundary conditions are included in C. This system is
solved for u and the predicted data are extracted from u via a
projection (or functional), Pd upred = [ ]. The ability to simulate the
geophysical problem and generate predicted data is a crucial
building block. Accuracy and efficiency are essential since many
forward problems must be evaluated when carrying out any
inversion.
2.2.2. Inversion elements
In the inverse problem, the first step is to specify how we

parameterize the earth model. Finding a distributed physical
property can be done by discretizing the 3D earth into voxels, each
of which has a constant but unknown value. It is convenient to
refer to the domain on which this model is discretized as the in-
version mesh, meshI. The choice of discretization involves an as-
sessment of the expected dimensionality of the earth model. If the
physical property varies only with depth, then the cells in meshI
can be layers and a 1D inverse problem can be formulated. A more
complex earth may require 2D or 3D discretizations. The choice of
discretization depends on the spatial distribution and resolution of
the data and the expected complexity of the geologic setting. We
note that the inversion mesh has different design criteria and
constraints than the forward simulation mesh. For convenience,
many inverse problems have historically been solved with meshI
¼meshF so that only one discretization is needed for the inversion.
There is a growing body of work that investigates combinations of
inversion discretizations and forward modeling meshes that are
geared towards problem specific formulations as well as efficiency
in large-scale problems (Haber and Schwarzbach, 2014; Yang et al.,
2014; Haber and Heldmann, 2007). In any formulation there exists
a mapping between meshI and meshF such that the para-
meterization chosen can be used to simulate data in a forward
simulation.

To formulate a mathematical statement of the inverse problem,
there are two essential elements:

1. data misfit: a metric that measures the misfit between the ob-
served and predicted data; and

2. regularization: a metric that is constructed to evaluate the
model's agreement with assumptions and prior knowledge.

The data misfit requires an assessment of the error in each
datum. These errors result from anything that yields a discrepancy
between the mathematical modeling and the true value. It in-
cludes additive noise, errors in the description of survey para-
meters (e.g. receiver locations, transmitter waveforms, etc.), in-
correct choice of governing equations, and numerical errors arising
from the simulation technique. Clearly, quantifying the noise for
each datum is a challenge.

The data misfit is a measure of how well the data predicted by a
given model reproduce the observed data. To assess goodness of fit,
we select a norm which evaluates the ‘size’ of the misfit. This
metric must include an uncertainty estimate for each datum. Often
we assume that the data errors are Gaussian and uncorrelated and
then estimate the standard deviation for each datum. The most
common norm, and one that is compatible with Gaussian statis-
tics, has the form

Fm W m d . 3d
1
2 d obs 2

2ϕ ( ) = ∥ ( [ ] − )∥ ( )

Here F m[ ] is a forward modeling that produces predicted data
dpred, as in Eq. (1). Wd is a diagonal matrix whose elements are
equal to W 1/d iii = ϵ where ϵi is an estimated standard deviation of
the ith datum. It is important to give careful thought into assign-
ment of these. A good option is to assign a floor d%i iϵ = + | |. Per-
centages are generally required when there is a large dynamic
range of the data. A percentage alone can cause great difficulty for
the inversion if a particular datum acquires a value close to zero,
and therefore we include a floor.

In addition to a metric that evaluates the size of the misfit, it is
also required that we have a tolerance, dϕ⁎; models satisfying

md dϕ ϕ( ) ≤ ⁎ are considered to adequately fit the data (Parker, 1994).
If the data errors are Gaussian and we have assigned the correct
standard deviations, then the expected value of Ndϕ ≈⁎ , where N is
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the number of data. Finding a model that has a misfit substantially
lower than this will result in a solution that has excessive and
erroneous structure, that is, we are fitting the noise. Finding a
model that has a misfit substantially larger than this will yield a
model that is missing structure that could have been extracted
from the data (see Oldenburg and Li, 2005 for a tutorial).

The choice of misfit in Eq. (3) is not the only possibility for a
misfit measure. If data errors are correlated, then Wd is the square
root of the data covariance matrix and it will have off-diagonal
terms. Often useful in practice is recognizing if the noise statistics
are non-Gaussian. Incorporating robust statical measures, like lp
norms with p 1≈ , are useful for handling outliers (Ekblom, 1973;
Farquharson and Oldenburg, 1998).

The second essential inversion element is defining the reg-
ularization functional. If there is one model that has a misfit that
equals the desired tolerance, then there are infinitely many other
models which can fit to the same degree. The challenge is to find
that model which has the desired characteristics and is compatible
with a priori information. A single model can be selected from an
infinite ensemble by measuring the length, or norm, of each
model. Then a smallest, or sometimes largest, member can be
isolated. Our goal is to design a norm that embodies our prior
knowledge and, when minimized, yields a realistic candidate for
the solution of our problem. The norm can penalize variation from
a reference model, spatial derivatives of the model, or some
combination of these. We denote this norm by ϕm and write it in a
matrix form, for example,

m W m m . 4m
1
2 m ref 2

2ϕ ( ) = ∥ ( − )∥ ( )

Wm is a matrix and mref is a reference model (which could be
zero). The matrix Wm can be a stacked combination of matrices
weighted by α⁎:

I W W WW , , , . 5s x x y y z zm α α α α= [ ] ( )⊤ ⊤ ⊤ ⊤

Here Wm is a combination of smallness and first-order smoothness
in the x, y, and z directions. Each of the W matrices is, in fact, a
discrete representation of an integral (cf. Oldenburg and Li, 2005).
The final regularization Wm can be a weighted sum of these, with
α⁎ being applied as scalars or diagonal matrices with varying
weights for each cell or cell face (cf. Oldenburg and Li, 2005; Ha-
ber, 2015). Additional weightings can also be incorporated through
Wm, such as depth weighting, which is important in potential field
inversions (such as magnetics and gravity), or sensitivity weight-
ings to prevent model structure from concentrating close to
sources or receivers (Li and Oldenburg, 1996a, 2000c). The reg-
ularization functionals addressed provide constraints on the
model in a weak form, that is, a single number is used to char-
acterize the entire model. Strong constraints that work within
each cell can often be provided in the form of upper and lower
bounds; these will be incorporated in the following section. The l2
norms referred to above are appropriate for many problems,
however models norms, such as lp-norms, total variation, mini-
mum support stabilizing functionals, or rotated smoothness op-
erators that favor different character and/or include additional
information can also be designed (cf. Oldenburg, 1984; Oldenburg
and Li, 2005; Claerbout and Muir, 1973; Strong and Chan, 2003;
Zhdanov, 2002; Li and Oldenburg, 2000a). The potential to have
different norms tailored to a specific problem, with the additional
functionality of localized weightings and reference models, pro-
vides the user with the capability of designing a regularization
that favors a solution that is compatible with existing knowledge
about the model. This task is not trivial, requires careful thought,
and must often be re-evaluated and adjusted as the geophysicist
iterates over the inversion procedure (Fig. 1).
2.2.3. Statement of the inverse problem
The purpose of this section is to pose our inverse problem in a

mathematically precise way and to provide a methodology by
which a solution can be achieved. In the work that follows, we
outline a specific methodology that we will later demonstrate. We
formulate the inverse problem as a problem in optimization,
where we define an objective function based on the data misfit
and model regularization and aim to find a model which suffi-
ciently minimizes it. Many variants of this are possible.

At this stage of the workflow, all of the necessary components
for formulating the inverse problem as an optimization problem
are at hand. We have the capability to forward model and generate
predicted data, assess the data misfit using ϕd, and a tolerance on
the data misfit has been specified. A regularization functional ϕm

and additional strong constraints on the model have been identi-
fied, such as upper and lower bounds: m m mi

L
i i

H≤ ≤ . The sought
model is one that minimizes ϕm and also reduces the data misfit to
some tolerance dϕ⁎. However, a reduction in data misfit requires
that the model have increased structure, which typically is at odds
with the assumptions we impose in the construction of ϕm,
meaning the ϕd and ϕm are antagonistic. To address this and still
pose the inversion as an optimization problem, we design a
composite objective function:

m m m , 6d mϕ ϕ βϕ( ) = ( ) + ( ) ( )

where β is a positive constant. It is often referred to as the trade-
off parameter, regression parameter, regularization parameter or
Tikhonov parameter (Tikhonov and Arsenin, 1977). When β is very
large, the minimization of mϕ ( ) produces a model that minimizes
the regularization term and yields a large mdϕ ( ). Alternatively,
when β is very small, minimization of mϕ ( ) produces a model that
fits the data very well but is contaminated with excessive structure
so that mmϕ ( ) is large. The inverse problem is posed as

m m m

m m m

minimize

such that , . 7

d m

d d i
L

i i
H

m
ϕ ϕ βϕ

ϕ ϕ

( ) = ( ) + ( )

≤ ≤ ≤ ( )⁎

Since the value of β is not known a priori, the above optimization
problem can be solved at many values of β to produce a trade-off,
or Tikhonov, curve (cf. Parker, 1994; Hansen, 1998). An optimum
value, β⁎, can be found so that minimizing Eq. (6) with β⁎ produces
a model with misfit dϕ⁎. The value of β⁎ can be found via cooling
techniques where the β is progressively reduced from some high
value and the process stopped when the tolerance is reached, or
using two-stage methods as advocated by Parker (1977). There are
other strategies for selecting the trade-off parameter including:
the L-curve technique (Hansen, 1992), which attempts to find the
point of greatest curvature in the Tikhonov curve; and Generalized
Cross Validation (Wahba, 1990; Golub et al., 1979; Golub and Von
Matt, 1997; Haber and Oldenburg, 2000; Oldenburg and Li, 2005;
Farquharson and Oldenburg, 2004).

The optimization posed in Eq. (7) is almost always non-linear. It
is linear only in the special case that the forward mapping is a
linear functional of the model, ϕm and ϕd are written as l2 norms, β
is known, and that there are no imposed bound constraints. This
rarely happens in practice, requiring that iterative optimization
methods be employed to find a solution. Gradient-based methods
are commonly used and the reader is referred to Nocedal and
Wright (1999), for background and introductions to the relevant
literature. For geophysical problems, Gauss–Newton techniques
have proven to be valuable and practical. For l2 norms we write the
objective function as

Fm W m d W m m . 8
1
2 d obs 2

2 1
2 m ref 2

2ϕ β( ) = ∥ ( [ ] − )∥ + ∥ ( − )∥ ( )

The gradient is given by
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g J Fm m W W m d W W m m , 9d d obs m m refβ( ) = [ ] ( [ ] − ) + ( − ) ( )⊤ ⊤ ⊤

where J m[ ] is the sensitivity or Jacobian. The components J m ij[ ]
specify how the ith datum changes with respect to the jth model
parameter; this will be discussed in more detail in the next sec-
tion. At the kth iteration, beginning with a model mk, we search
for a perturbation mδ that reduces the objective function. Line-
arizing the forward simulation by

F F Jm m m m m 10k k kδ δ[ + ] ≈ [ ] + [ ] ( )

and setting the gradient equal to zero yields the standard Gauss–
Newton equations to be solved for the perturbation mδ :

J J gm W W m W W m m . 11d d m mβ δ( [ ] [ ] + ) = − ( ) ( )⊤ ⊤ ⊤

The updated model is given by

m m m, 12k k1 γδ= + ( )+

where 0, 1γ ∈ ( ] is a coefficient that can be found by a line search.
Setting γ¼1 is the default and a line search is necessary if

m mk k1ϕ ϕ( ) ≥ ( )+ .
The iterative optimization process is continued until a suitable

stopping criterion is reached. Completion of this iterative process
yields a minimization for particular value of the trade-off para-
meter, β. If we are invoking a cooling schedule, and if the desired
misfit tolerance is not yet achieved, β is reduced and the iterative
numerical optimization procedure is repeated.

2.2.4. Sensitivities
A central element in the above approach is the computation of

the sensitivities. The sensitivity functional is defined by

⎛
⎝⎜

⎞
⎠⎟J

dF
d

d
d

m
m

m
P

u
m

,
13

[ ] = [ ] =
( )

where P is a linear projection, and d· indicates total difference.
There are numerous approaches to computing the sensitivity but
the chosen methodologies are dictated by the size of the problem.
The discrete sensitivity matrix, J, is a dense N�M matrix, where N
is the number of data and M is the number of model parameters.
For some problems, J can be computed directly and stored. Ulti-
mately this demands the solution of numerous forward problems
(cf. Haber, 2015). Another approach is to factor J m[ ] in symbolic
form. In the general case, we solve for the sensitivity implicitly by
taking the derivative of C m u, 0( ) = (Eq. (2)) to yield:

C d C dm u m m u u, , 0, 14m u∇ ( ) + ∇ ( ) = ( )

where ∇· indicates partial difference, and both C m u,m∇ ( ) and
C m u,u∇ ( ) are matrices. For a given model, C m u,u∇ ( ) corresponds

to the forward simulation operator, and if the forward problem is
well-posed, then the matrix is invertible (Haber, 2015). Eq. (14)
can be rearranged to

d C C du m u m u m, , , 15u m
1( )= − ∇ ( ) ∇ ( ) ( )

−

and combined with Eq. (13) to obtain a formula for the sensitivity
matrix. We note that this matrix is dense, often large, and need not
actually be formed and stored.

2.2.5. Inversion as optimization
Once the inverse problem has been stated in an optimization

framework (Eq. (7)), an appropriate optimization routine can be
selected. For example, if bound constrains are incorporated, a
projected Gauss–Newton algorithm can be used. In large-scale
inversions, special attention may have to be given to ensuring a
memory efficient optimization algorithm, however, the underlying
mechanics of the algorithms often remain unchanged. In a
geophysical inversion we require a model that is consistent with a
priori information and known or assumed statistical distributions.
As such, the stopping criteria of the inversion are often im-
plemented differently than traditional optimization algorithms, or
a series of incomplete optimization algorithms are invoked while
changing the objective function (Oldenburg and Li, 2005; Haber,
2015; Haber et al., 2000).

The optimization of the stated inverse problem provides the
machinery to obtain a mathematical solution. However, before the
model is accepted as a viable candidate, there are numerous
questions that should be investigated. For example, questions to be
addressed might include: (a) How well does the recovered model
fit the observed data? (b) Is there bias in the misfits between the
observed and predicted data? (c) What was the path for the con-
vergence? (d) Is there too much or too little structure? (e) Does the
model fit with prior knowledge and other data sets? The final
results and details about how the inversion algorithm has per-
formed all provide clues as to whether the constructed model can
be accepted, or if elements in our procedure or its numerical im-
plementation need to be altered and the inversion rerun. This
might include adjusting the assigned uncertainties in the misfit
function, altering the model regularization, or changing aspects of
the numerical computations.

2.3. Evaluation/interpretation

In this section we return to the initial question posed for which
the inversion was designed to help answer. Items of interest might
include: (a) Are the interesting features supported by the data or
are they artifacts? (b) Does the result make sense geologically and
geophysically? (c) Are there interesting features that should be
investigated further? Addressing these questions usually involves
repeating the inversion process with appropriate modifications (cf.
Oldenburg and Li, 2005; Pidlisecky et al., 2011; Lines et al., 1988).
As such, we require an implementation that is inherently and
unequivocally modular, with all pieces available to manipulation.
Black-box software, where the implementations are hidden, ob-
fuscated, or difficult to manipulate, do not promote experi-
mentation and investigation. Exposing the details of the im-
plementation to the geophysicist in a manner that promotes pro-
ductivity and question-based interrogation is the goal of SIMPEG
and is the topic of the next section.
3. Modular implementation

There are an overwhelming amount of choices to be made as
one works through the forward modeling and inversion process
(Fig. 1). As a result, software implementations of this workflow
often become complex and highly interdependent, making it dif-
ficult to interact with and to ask other scientists to pick up and
change. Our approach to handling this complexity is to propose a
framework, Fig. 2, that compartmentalizes the implementation of
inversions into various units. We present it in this specific modular
style, as each unit contains a targeted subset of choices crucial to
the inversion process.

The aim of the SIMPEG framework and implementation is to
allow users to move between terminology, math, documentation
and code with ease, such that there is potential for development in
a scalable way. The SIMPEG implementation provides a library that
mimics the framework shown in Fig. 2 with each unit representing
a base class. These base classes can be inherited in specific geo-
physical problems to accelerate development as well as to create
code that is consistent between geophysical applications.



Fig. 2. SIMPEG framework indicating the flow of information. In the implementa-
tion, each of these modules is a base class.

Fig. 3. Location of variable in a single voxel of a three dimensional finite volume
discretization.
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3.1. Implementation choices

We chose Python (Van Rossum and Drake, 1995) for the im-
plementation of SIMPEG. Python supports object-oriented prac-
tices, interactive coding, has extensive support for documentation,
and has a large and growing open source scientific community
(Lin, 2012). To enhance the dissemination of our work, we have
released our work under the permissive MIT license for open
source software. The MIT license does not force packages that use
SIMPEG to be open source nor does it restrict commercial use. We
have also ensured that our practices with regard to version control,
code-testing and documentation follow best practices (Wilson
et al., 2014).

3.2. Overview

As discussed in the previous section, the process of obtaining
an acceptable model from an inversion generally requires the
geophysicist to perform several iterations of the inversion work-
flow, rethinking and redesigning each piece of the framework to
ensure it is appropriate in the current context. Inversions are ex-
perimental and empirical by nature and our software package is
designed to facilitate this iterative process. To accomplish this, we
have divided the inversion methodology into eight major com-
ponents (Fig. 2). The Mesh class handles the discretization of the
earth and also provides numerical operators. The forward simu-
lation is split into two classes, the Survey and the Problem. The
Survey class handles the geometry of a geophysical problem as
well as sources. The Problem class handles the simulation of the
physics for the geophysical problem of interest. Although created
independently, these two classes must be paired to form all of the
components necessary for a geophysical forward simulation and
calculation of the sensitivity. The Problem creates geophysical
fields given a source from the Survey. The Survey interpolates
these fields to the receiver locations and converts them to the
appropriate data type, for example, by selecting only the measured
components of the field. Each of these operations may have as-
sociated derivatives with respect to the model and the computed
field; these are included in the calculation of the sensitivity. For
the inversion, a DataMisfit is chosen to capture the goodness of fit
of the predicted data and a Regularization is chosen to handle
the non-uniqueness. These inversion elements and an Optimi-

zation routine are combined into an inverse problem class
(InvProblem). InvProblem is the mathematical statement (i.e.
similar to Eq. (7)) that will be numerically solved by running an
Inversion. The Inversion class handles organization and dis-
patch of directives between all of the various pieces of the
framework.

The arrows in the Fig. 2 indicate what each class takes as a
primary argument. For example, both the Problem and Reg-

ularization classes take a Mesh class as an argument. The
diagram does not show class inheritance, as each of the base
classes outlined have many subtypes that can be interchanged. The
Mesh class, for example, could be a regular Cartesian mesh or a
cylindrical coordinate mesh, which have many properties in
common. These common features, such as both meshes being
created from tensor products, can be exploited through in-
heritance of base classes, and differences can be expressed
through subtype polymorphism. We refer the reader to the online,
up-to-date documentation (http://docs.simpeg.xyz) to look at the
class inheritance structure in depth.

3.3. Motivating example

We will use the DC resistivity problem from geophysics to
motivate and explain the various components of the SIMPEG fra-
mework. This example will be referred to throughout this section;
we will introduce it briefly here, and refer the reader to Pidlisecky
et al. (2007) for a more in-depth discussion. The governing equa-
tions for DC resistivity are

I r r r r , 16s sσ ϕ δ δ∇·( − ∇ ) = ( (→ − → ) − (→ − → )) ( )+ −

where s is the electrical conductivity, ϕ is the electric potential, I is
the input current at the positive and negative dipole locations r s

→±,
captured as Dirac delta functions. In DC resistivity surveys, dif-
ferences in the potential field, ϕ, are sampled using dipole re-
ceivers to collect observed data. To simulate this partial differential
equation PDE) (or set of PDEs, if there are multiple current injec-
tion locations), we must discretize the equation onto a computa-
tional mesh.

3.4. Mesh

Any numerical implementation requires the discretization of
continuous functions into discrete approximations. These ap-
proximations are typically organized in a mesh, which defines
boundaries, locations, and connectivity. Of specific interest to
geophysical simulations, we require that averaging, interpolation
and differential operators be defined for any mesh. In SIMPEG, we
have implemented a staggered mimetic finite volume approach
(Hyman and Shashkov, 1999; Hyman et al., 2002). This approach
requires the definitions of variables at either cell-centers, nodes,
faces, or edges as described in Fig. 3. We will focus our attention
on explaining our implementation of a tensor mesh. A more

http://docs.simpeg.xyz


Table 1
Selected Mesh class properties with explanations.

Property or function Explanation

dim Dimension of the mesh
x0 Location of the origin
nC, nN, nF, nE The number of cells, nodes, faces, or edges. (e.g. nC is

the total number of cells)
vol, area, edge Geometric measurements for the mesh
gridN, gridCC, etc. Array of grid locations
nodalGrad Gradient of a nodal variable edge→ variable
faceDiv Divergence of a face variable cell centered→ −

variable
edgeCurl Curl of a edge variable face→ variable
cellGrad Gradient of a cell-centered variable face→ variable
aveF2CC, aveN2CC, etc. Averaging operators (e.g. F CC→ , takes values on

faces and averages them to cell-centers)
getInterpolationMat(loc) Interpolation matrix for xyz locations
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detailed explanation can be found in Haber (2015). To create a new
Mesh instance, a TensorMesh class can be selected from the SIM-

PEG Mesh module and instantiated with a list of vectors:

D ¼
fr

hx

hy

G ¼
Ms

Fig. 4
(b) Tr
om SimPEG import Mesh, Solver, Utils, np, sp

¼ np.ones(30)

¼ np.ones(30)

sh ¼ Mesh.TensorMesh([hx,hy])
Ai

u ¼
me

Here, the SIMPEG library is imported, as well as NumPy (np) and
SciPy's sparse matrix package (sp) (Oliphant, 2007; Jones et al.,
2001). The vectors hx and hy describe the cell size in each mesh
dimension. The dimension of the mesh is defined by the length of
the list, requiring very little change to switch mesh dimensions or
type. Once an instance of a mesh is created, access to the prop-
erties and methods shown in Table 1 is possible. There are addi-
tional methods and visualization routines that are also included in
the SIMPEG Mesh classes. Of note in Table 1 are organizational
properties (such as counting, and geometric properties), locations
of mesh variables as Cartesian grids, differential and averaging
operators, and interpolation matrices. The mesh implementation
can be readily extended to other types of finite volume meshes, for
example, OcTree (Haber and Heldmann, 2007), logically rectan-
gular non-orthogonal meshes (Hyman et al., 2002), and un-
structured meshes (Ollivier-Gooch and Van Altena, 2002). Ad-
ditionally, this piece of the framework may be replaced by other
methodologies such as finite elements.

The Mesh interface allows for lazy loading of properties, that is,
. Solving the DC resistivity problem for a dipole and using the meshes visualiza
eeMesh, and (c) CurvilinearMesh. The potential has been interpolated onto the te
all properties of the mesh are created on demand and then stored
for later use. This is important as not all operators are useful in all
problems and, as such, are not created. The implementation here is
different from some other finite volume implementations as the
operators are held in memory as matrices and are readily available
for interrogation. We find this feature to be extremely beneficial
for educational and research purposes as the discretization re-
mains visually very close to the math, and the matrices can be
manipulated, visually inspected, and combined readily.

With the differential operators readily accessible, simulation of
a cell-centered discretization for conductivity, s, in the DC re-
sistivity problem is straight-forward. The discretized system of Eq.
(16) can be written as

A u D M Gu q, 171
f 1

/σ( ) = ( ) = − ( )σ
−

where D and G are the divergence and gradient operators, re-
spectively. The conductivity, s, is harmonically averaged from cell-
centers to cell-faces to create the matrix M1

f 1
/( )σ

− (Pidlisecky et al.,
2007). In SIMPEG this is written as:
tion r
nsor m
mesh.faceDiv

mesh.cellGrad

ig ¼ Utils.sdiag(1/(self.mesh.aveF2CC.T n (1/

sigma)))

DnMsig n G
A ¼

The code is easy to read, looks similar to the math, can be built
interactively using tools such as IPython (Pérez and Granger,
2007), and is not dependent on the dimension of mesh used.
Additionally, it is decoupled from the mesh type, for example,
Fig. 4 is generated by solving a DCProblem for three different
mesh types: TensorMesh, TreeMesh and CurvilinearMesh.
Other than the specific mesh generation code, no other mod-
ifications to the DC problem were necessary (see the online ex-
amples provided in SIMPEG). Given the electrode locations, a q can
be constructed on each mesh and the system A u qσ( ) = − solved.
SIMPEG comes with a few different types of Solver objects that
provide a simple and common interface to direct and iterative
solvers found across many different Python packages.
nv ¼ Solver(A) # Create a solver object

Ainv n (- q )

sh.plotImage(u)
me

The potential field can be projected onto the receiver electrode
outine for the potential, ϕ, for three different mesh types: (a) TensorMesh,
esh for visualization.
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Table 3
Selected Survey class properties with explanations.

Property or function Explanation

dobs, nD dobs, number of data
std Estimated standard deviations
srcList List of sources with associated receivers
dpred(m) Predicted data given a model, mdpred( )
projectFields(m, u) Projects the fields, P m u,( )
projectFieldsDeriv(m, u) Derivative of the projection, dP m u

dm
,( )

residual(m) md dpred obs( ) −
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locations through interpolation matrices constructed by the Mesh

class. Additionally, there are multiple visualization routines that
have been included in the Mesh class for rapid visualization and
interrogation of geophysical fields and physical properties (Fig. 4).
We note that these code snippets can be easily be combined in a
script, highlighting the versatility and accessibility of the Mesh

classes in SIMPEG.
This script will be expanded upon and segmented into the

various pieces of the framework in the following sections. We find
that the development of geophysical codes is often iterative and
requires ‘scripting’ of equations. Only after these are correct, as
demonstrated by an appropriate test (e.g. Tests.checkDer-

ivative), do we formalize and segment our script to enable a
geophysical inversion to be run. The toolbox that SIMPEG provides
promotes this interactive and iterative style of development.

3.5. Forward simulation

The forward simulation in SIMPEG is broken up into a Survey

class and a Problem class. The Problem class contains the in-
formation and code that capture the physics used to describe the
connection between a physical property distribution and the
fields/fluxes that are measured in a geophysical survey. The
Survey class contains information about the observed data and
the geometry of how to collect the data (e.g. locations and types of
receivers and sources) given a Problem that simulates fields. The
Problem and the Survey must be paired together to simulate
predicted data. We decided on this separation of the code because
it is possible to have multiple mathematical descriptions, of
varying complexities, that explain the same observed data. For
example, a seismic simulation could have multiple approximations
to the physics which increase in complexity and accuracy, from
straight-ray tomography, Eikonal tomography, to full waveform
simulation. Additionally, there are often multiple types of geo-
physical surveys that could be simulated from the same Problem

class.
The crucial aspects of the Problem class are shown in Table 2,

and the properties and methods of the Survey class are shown in
Table 3. We note that each of the sub-classes of Problem will
implement fields and sensitivities in a different way, likely with
additional methods and properties. Furthermore, the choice of
terminology becomes clearer when these classes are inherited and
used in a specific geophysical method (e.g. a DCProblem or EM-

Problem). For the DCProblem, the fields can be created by
constructing A m( ) and solving with the source terms, Q, which
will be provided by the DCSurvey's source list (srcList). Each
source has at least one receiver associated with it; the receivers
can create a matrix, P, that project the fields, u, onto the data-
space. For example, in the DC problem, a dipole receiver samples
the potential at each electrode location and computes the differ-
ence to give a datum. We note that the process of computing a
datum may be more involved and have derivatives with respect
the computed fields and possibly the model. Much of the organi-
zational bottlenecks are taken care of through general receiver and
source classes, which can be inherited and tailored to the specific
application. The mapping in the Problem provides a transform
Table 2
Base Problem class properties with explanations.

Property or function Explanation

fields(m) Calculation of the fields given a model
Jvec(m, v) Sensitivity times of a vector
Jtvec(m, v) Adjoint sensitivity times a vector
mapping Maps the model to a physical property
from an arbitrary model to a discretized grid function of physical
properties. For example, log-conductivity is often used in the in-
verse problem for DC resistivity rather than parameterizing di-
rectly in terms of conductivity. If this choice is made for the model,
an appropriate map (i.e. the exponential) must be provided to
transform from the model space to the physical property space (cf.
Heagy, 2014).

3.6. DC resistivity forward simulation

A simple DC-resistivity survey is presented to demonstrate
some of the components of SIMPEG in action. A set of Schlumber-
ger arrays is used to complete a vertical sounding. In this example,
we have taken our scripts from the previous section describing the
forward simulation and combined them in a package called
simpegDC (http://simpeg.xyz). We use the 3D tensor mesh to run
the forward simulation for the data of this problem.
port simpegDC as DC

rvey ¼ DC.SurveyDC(srcList)

oblem ¼ DC.ProblemDC(mesh)

oblem.pair(survey)

ta ¼ survey.dpred(sigma)
da

Here the srcList is a list of dipole sources (DC.SrcDipole),
each of which contains a single receiver (DC.RxDipole). Similar
to the illustration in Fig. 2, the Problem and the Survey must be
paired for either to be used to simulate fields and/or data. These
elements represent the major pieces of any forward simulation in
geophysics, and are crucial to have in place and well tested for
accuracy and efficiency before any attempt is made at setting up
the inverse problem.

3.7. Sensitivities

The sensitivity and adjoint will be used in the optimization
routine of the inversion. Inefficient or inaccurate calculation of the
sensitivities can lead to an extremely slow inversion. This is critical
in large-scale inversions where the dense sensitivity matrix may
be too large to hold in memory directly. As discussed in the
methodology section, the sensitivity matrix need not be explicitly
created when using an iterative optimization algorithm such as
Gauss–Newton (11) solved with a conjugate gradient approach.
The calculation of vector products with the sensitivity matrices is
an important aspect of SIMPEG, which has many tools to make
construction and testing of these matrices modular and simple. For
the DC resistivity example, the discretized governing equations are
written as C m u A m u q 0,( ) = ( ) − = . We can implement the sen-
sitivity equations (13) and (15) to yield:

CJ P A m m u, , 18m
1= − ( ( ) ∇ ( )) ( )−

where C m u,m∇ ( ) is a known sparse matrix, mA( ) is the forward
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Fig. 5. Sensitivity times of a vector method for the DCProblem.
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operator and is equivalent to C m u,u∇ ( ), and P is a projection
matrix (cf. Pidlisecky et al., 2007). Each matrix in this expression is
sparse and can be explicitly formed, however, the product is dense
and it may not be possible to hold it in memory. If an iterative
solver is used in the optimization, only matrix vector products are
necessary and the sensitivity need not be explicitly calculated or
stored. Fig. 5 outlines the calculation of Jvec given a model, m, the
fields, u, and a vector to multiply, v. In Fig. 5, we draw the dis-
tinction between the model, m, and the conductivity, sig, which
are connected through a mapping, mσ = ( ), and associated de-
rivatives. The matrix C m u,m∇ ( ) is denoted dCdm and formed by
looping over each source in the DC resistivity survey.

3.8. Inversion elements

As indicated in the methodology section, there are two key
elements needed for a geophysical inversion: DataMisfit and
Regularization. The DataMisfit must have a way to calculate
predicted data, as such, it takes a paired survey as an initial ar-
gument, allowing forward simulations to be completed. Data-
Misfit and Regularization have similar interfaces which are
shown in Table 4. The DataMisfit class also has a property,
targetMisfit, for the target misfit, which can be checked by an
InversionDirective and used as a stopping criteria. As dis-
cussed in the methodology section, the Regularization is de-
fined independently from the forward simulation. The regular-
ization is with respect to the model, which may or may not be on
the same mesh as the forward simulation (i.e. mesh meshI F≠ ). In
this case, a mapping of a model to a physical property on the
Table 4
Common functions for the Regularization, DataMisfit, InvProblem classes.

Function Explanation

eval(m) Evaluate the functional given a model
evalDeriv(m) First derivative returns a vector
eval2Deriv(m, v) Second derivative as an implicit operator
forward simulation mesh is necessary for the Problem. The
Regularization class also has a mapping property allowing a
wide variety of regularizations to be implemented (e.g. an active
cell map used to ignore air cells). As such, the Regularization

mapping is often independent from the mapping in the Problem

class, which outputs a physical property. Included in the SIMPEG
package are basic Tikhonov regularization routines and simple l2
norms for both Regularization and DataMisfit classes. Each of
these classes has properties for the appropriate model and data
weightings discussed in the previous section (e.g. Wm and Wd).
These classes are readily extensible such that they can be custo-
mized to specific problems and applications, such as considering l1
or lp norms or customized regularizations.

3.9. Inverse problem and optimization

The InvProblem combines the DataMisfit and Regular-

ization classes by introducing a trade-off parameter, β. In addi-
tion to the trade-off parameter, there are methods that evaluate
the objective function and its derivatives (Table 4). Additional
methods can save fields such that information is not lost between
evaluation of the objective function and the derivatives. The In-

vProblem may also include bounds on the model properties so
they can be used in the optimization routine. If one considers a
joint or integrated inversion, multiple data misfit functions, em-
ploying different physics, and multiple types of regularization
functionals may be summed together, possibly with relative
weightings, to define the InvProblem (cf. Lines et al., 1988;
Holtham and Oldenburg, 2010; Heagy, 2014). Once the In-

vProblem can be evaluated to a scalar and has associated deri-
vatives, an Optimization can either be chosen among the ones
included in SIMPEG or provided by an external package. Optimi-
zation routines in SIMPEG include steepest descent, L-BFGS, and
Inexact Gauss–Newton (cf. Nocedal and Wright, 1999). The com-
ponents are relatively simple to hook up to external optimization
packages, for example, with the optimization package in SciPy
(Jones et al., 2001).

3.10. Inversion

The Inversion conducts all communication between the
various components of the framework and is instantiated with an
InvProblem object. The Inversion has very few external
methods, but contains the list of directives that are executed
throughout the inversion. Each InversionDirective has access
to the components of the inversion framework and can thus access
and change any of these components as the inversion is running. A
simple directive may print optimization progress or save models to
a database. More complicated directives may change or compute
parameters such as β, reference models, data weights, or model
weights. These directives are often guided by heuristics, but ver-
sions can often be formalized, see for example the iterative Ti-
khonov style inversion (Tikhonov and Arsenin, 1977; Parker, 1994;
Oldenburg and Li, 2005). There are many computational shortcuts
that may be investigated, such as how many inner and outer CG
iterations to complete in the inexact Gauss–Newton optimization
and whether this should change as the algorithm converges to the
optimal model. The directiveList in the Inversion en-
courages heuristics that geophysicists often complete ‘by hand’ to
be codified, combined, and shared via a plug-in style framework.

3.11. DC resistivity inversion

We will build on the example presented in Section 3.6, which
has a survey setup that only provides enough information for a
vertical sounding. As such, we will decouple our 3D forward mesh
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and 1D inversion mesh and connect them through a mapping (cf.
Kang et al., 2015a). Additionally, since electrical conductivity is a
log-varying parameter, we will also construct a model space that is
optimized in log space. Both of these model transformations will
be handled with a single map, , where mσ = ( ).
fr

ma

si

me

dm

re

op

in

in

mo
om SimPEG import Maps

pping ¼ Maps.ExpMap(mesh) n Maps.Vertical1DMap

(mesh)

gma¼mapping n model
We have provided a number of common mapping transformations
in the SimPEG.Maps package, and these can be easily combined
through a multiplication symbol. Additionally, when using these
maps, the derivatives are calculated using the chain rule allowing
them to be easily included in the sensitivity calculation (cf. Fig. 5,
line 15). Fig. 7 demonstrates this mapping visually. The 1D model
is in log σ( ), shown in Fig. 6(a) as a black solid line and the
transformation produces a 3D sigma vector which was plotted in
Fig. 6(b). We can now use the same simulation machinery as
discussed in Section 3.6, with a single change:

problem DC. ProblemDC mesh, mapping mapping= ( = )

Synthetic data, dobs, are created using the 1D log-conductivity
model and adding 1% Gaussian noise. When creating the regular-
ization inversion element, again we note that the mapping para-
meter can be used to regularize in the space which makes the
most sense. In this case we will regularize on a 1D mesh in log-
conductivity space, as such, we supply only a 1D tensor mesh to
the regularization. An inversion is run by combining the tools
described above. Fig. 2 illustrates how the components are put
together.
sh1D¼Mesh.TensorMesh([mesh.hz])

is¼DataMisfit.l2_DataMisfit(survey)
g¼Regularization.Tikhonov(mesh1D)

t¼Optimization.InexactGaussNewton()

vProb¼InvProblem.BaseInvProblem(dmis, reg,

opt)

v¼Inversion.BaseInversion(invProb)

pt¼inv.run(m0)
We note that there are many options and inputs that can enhance
the inversion; refer to the online up-to-date documentation
(http://docs.simpeg.xyz). The result of this inversion can be seen in
Fig. 7(a) and (b) for the predicted data and model, respectively.
Fig. 6. Illustration of mapping in DC inversion. (a) 1D l
3.12. Development practices

Throughout the development of SIMPEG, we have focused on
building both a framework (Fig. 2) and a toolbox that is flexible
and extensible. The toolbox includes utilities that we use re-
peatedly in our research, for example, visualization routines, mesh
generation, and synthetic modeling. Additionally, when writing
new code for differential operators and PDE systems, several
functions are available to help test and verify results including:
(a) checking derivatives and expected order of convergence,
(b) comparing to analytics, and (c) adjoint tests for the sensitivity
operators (cf. Haber, 2015). These tests can be written in-line in an
interactive development paradigm and then rapidly transferred
and incorporated as unit-tests to ensure future code changes do
not change functionality. Currently the entire SIMPEG project has
upwards of 80% test coverage, with all core functionality (e.g.
discretization and optimization) being extensively tested. All
changes are combined using the practice of continuous integra-
tion, supported by freely available tools for open source projects
such as TravisCI and GitHub. Additionally, we have focused on
writing and maintaining documentation for core functionality
(http://docs.simpeg.xyz). The documentation is also practicing
continuous integration and is updated with all changes to SIMPEG
and is built and hosted through ReadTheDocs (Holscher et al.,
2010). We are hopeful that our efforts and adherence to best
practices in open source code development (cf. Wilson et al., 2014)
will encourage a community to exercise reproducible research
around these scientific tools (cf. Fomel and Claerbout, 2009).
4. Conclusions

Producing an interpretation from geophysical data through an
inversion is an iterative process with many moving pieces. A
number of inversion components, techniques and methodologies
have become standard practice. The development of new meth-
odologies to address the evolving challenges in the geosciences
will build upon and extend these standard practices, requiring
experimentation with and recombination of existing techniques.
To facilitate this combinatorial experimentation, we have orga-
nized the components of geophysical inverse problems in a com-
prehensive, modular framework. Our implementation of this fra-
mework, SIMPEG (http://www.simpeg.xyz), provides an extensible,
well-tested toolbox and infrastructure that supports problems
including electromagnetics, fluid flow, seismic, and potential
fields. As SIMPEG is formulated with the inverse problem as its core
focus, many design choices have been made to ensure that sen-
sitivities are efficient to compute and are readily available; we
og conductivity model. (b) 3D conductivity model.

http://docs.simpeg.xyz
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Fig. 7. (a) Observed (black line) and predicted (red line) apparent resistivity values. (b) True and recovered 1D conductivity model. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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presume this will be advantageous for integrated geophysical in-
versions. The modular framework we suggest splits the code into
components that are motivated directly by geophysical metho-
dology and terminology. This allows each piece to be improved by
specialists whilst promoting quantitative communication between
researchers.

To accelerate the dissemination and adoption of SIMPEG in the
wider community, we have made the entire project open source
under the permissive MIT License. The usability of this framework
has been a focus of SIMPEG, and we strive to use best practices of
continuous integration, documentation (http://docs.simpeg.xyz),
unit-testing, and version-control. These practices are key to have
in place as more modules and packages are created by the
community.
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