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S U M M A R Y
We propose a new framework for incorporating petrophysical and geological information
into voxel-based geophysical inversion. By developing the geophysical inverse problem from
a probabilistic perspective, we redesign the objective function and the iteration steps as a
suite of cyclic optimization problems in which three separate MAP optimization problems are
solved using geophysical, petrophysical and geological data, respectively. By quantitatively
linking these data into a single framework, we recover a final inverted model that reproduces
the observed, or desired, petrophysical and geological features while fitting the geophysical
data. To achieve our goal we replace the Gaussian prior, used in the Tikhonov inversion
approach, by a Gaussian mixture model. After each geophysical model update, the mixture
parameters (means, variances and proportions) are determined by the geophysical model and
the expected characteristics of the lithologies through another optimization process using the
expectation–maximization algorithm. We then classify the model cells into rock units ac-
cording to the petrophysical and geological information. These two additional steps over the
petrophysical and geological data result in a dynamic update of the reference model and as-
sociated weights and guide the inversion towards reproducing the expected petrophysical and
geological characteristics. The resulting geophysical objective function does not require extra
terms to include the additional petrophysical and geological information; this is an important
distinction between our work and previous frameworks that carry out joint geophysical and
petrophysical data inversion. We highlight different capabilities of our methodology by invert-
ing magnetotelluric and direct-current resistivity data in 1-D and 2-D, respectively. Finally, we
apply our framework to inverting airborne frequency domain data, acquired in Australia, for
the detection and characterization of saline contamination of freshwater.

Key words: Electrical properties; Non-linear electromagnetics; Inverse theory; Joint Inver-
sion; Probability distributions.

1 I N T RO D U C T I O N

Geophysical inversions are an essential tool for mapping the sub-
surface. However, the image of the underground retrieved from an
inversion rarely benefits from the full range of knowledge because
petrophysical relationships or expected geological features are not
easily incorporated into traditional geophysical inversions. Since
the early 2000s, there has been an increasing interest in including
this information to obtain more realistic geological interpretations
(Linde et al. 2015; Moorkamp et al. 2016). Various strategies have
been implemented such as adding bound constraints and preferential
trends (Li & Oldenburg 2000; Williams 2008; Lelièvre et al. 2009;
Astic & Chouteau 2019), parametrization of the expected shapes of
the geological bodies (Fullagar et al. 2008; McMillan et al. 2015),
inclusion of more complex non-geophysical data such as structural
data (Wu 2017), reproducing petrophysical data (Bosch et al. 2009;

Grana & Della Rossa 2010; Sun & Li 2015; Zhdanov & Lin 2017)
and training on geological images (Lochbühler et al. 2015).

For the inclusion of petrophysical data, the most recent frame-
works have focused on using clustering techniques such as the
fuzzy C-means algorithm. This was first used in Paasche & Tron-
icke (2007) and later expanded in Lelièvre et al. (2012). This ap-
proach adds a clustering term to the objective function and allows
a less strict relationship between the physical properties of interest.
Further expansion of the method has been carried out by Sun &
Li (2015, 2016, 2017). In addition to the fuzzy C-means cluster-
ing term, they added an iterative update to the cluster centres; this
starts to introduce the notion of uncertainty for the petrophysical
data. For linear problems, Grana et al. (2017) proposed a Bayesian
formulation using a fixed Gaussian mixture model as prior, which
allows them to estimate the posterior distribution and then to sample
from that distribution. Giraud et al. (2017) on their side focused on
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Figure 1. A graphical representation for our framework. Each diamond is
a MAP estimation which requires data (shown in rectangular boxes) as well
as input from the other MAP estimates.

reducing geological uncertainties by linking geophysical inversion
and stochastic geological modelling through petrophysical informa-
tion using a fixed Gaussian mixture model to model the petrophys-
ical information. They modified the usual least-squares objective
function of the geophysical inverse problem by adding a proba-
bilistic term, computed from the prior petrophysical and geological
distributions. To do this they required fixed, and thus very strong,
priors for both the petrophysical and geological information. That
information however is not often well-known and may exist only at
a qualitative level.

This paper presents a new framework for petrophysically and
geologically guided inversion (PGI) that generalizes concepts pre-
sented in Grana et al. (2017), Giraud et al. (2017) and Sun & Li
(2015). We use a Gaussian mixture model (GMM) that represents
our petrophysical and geological knowledge to regularize the geo-
physical inversion; this is analogous to the approach used by Grana
et al. (2017). The idea of learning the physical properties mean
values described in Sun & Li (2015) is formalized and extended to
the variances and proportions of the GMM. At the same time we are
able to include the geological information in the GMM in a similar
way as did Giraud et al. (2017).

Our algorithm involves three optimization problems (Fig. 1,
diamond-shape nodes) over the geophysical, petrophysical and ge-
ological knowledge, that are solved cyclically. Each optimization
is cast within a Bayesian formulation as a MAP (maximum a pos-
teriori) estimation over a posterior distribution. The framework is
iterative and the geophysical model, the petrophysical characteriza-
tion and the geological identification are updated through successive
cycles. We show how petrophysical and geological information can
be integrated into the smallness term of a conventional regulariza-
tion operator in the geophysical inversion. Consequently we can
achieve our objectives by carrying out a conventional deterministic
geophysical inversion without adding extra terms in the regulariza-
tion term. This is an important simplification since it eliminates
the need for extra weighting parameters; it also allows previously
developed Tikhonov-style inversion codes to be used. Our frame-
work brings the petrophysical information to the same level as the
geophysical information and allows us to generalize the concepts
of uncertainties for the petrophysical data. This also allows us to
define a formal target misfit for the petrophysical and geological
information that is similar to the geophysical data target misfit; this
concept has been missing from previous frameworks.

The paper proceeds in the following way. We first introduce the
key concepts and vocabulary in Section 2. We view the well-known
Tikhonov inversion through a probabilistic lens to relate it to a MAP
estimate of a posterior probability density distribution. This defines
the geophysical inversion process displayed in our framework in
Fig. 1 (process 1). The GMM is then introduced as a way to repre-
sent geological and petrophysical information. Section 3 focuses on

the mathematical description of the framework. We show how geo-
logical and petrophysical information can be linked in a voxel-based
geophysical inversion through the smallness term by replacing the
Gaussian prior in the Tikhonov approach with a Gaussian mixture
model representing both the petrophysical and geological knowl-
edge. The smallness term can thus be interpreted as a misfit for the
petrophysical and geological data. This allows us to define a natural
metric for determining an acceptable misfit. We also define the geo-
logical identification process (Fig. 1, process 3). Finally, to complete
the framework definition, we present our approach to the dynamic
petrophysical characterization (Fig. 1, process 2). Numerical solu-
tions such as weighting strategy, convergence and pseudocode are
presented in the Section 4 which is dedicated to numerical imple-
mentation. In Section 5, synthetic and field examples are used to
illustrate some essential aspects of our algorithm. A 1-D magne-
totelluric (MT) example with both sharp and smooth features is used
to illustrate the gain made in the recovery of a geophysical model
when petrophysical information is available. We also use this ex-
ample to step through the various stages of the algorithm. A 2-D
direct-current (DC) resistivity example is used to demonstrate our
framework when petrophysical information is minimal; for instance
when only an expected number of distinct units is expected. This
example is also used to highlight the gain made by the inclusion of
prior geological information. Finally, we highlight how this frame-
work can be used to incorporate constraints regarding the number of
geological units and narrow down the domain of possible geophysi-
cal models. We use an airborne frequency domain electromagnetics
(FDEM) field example, with data acquired in the Bookpurnong area
in Australia, to invoke a geological assumption about the number of
units needed to characterize saltwater contamination. We conclude
with a discussion about the key components of the PGI framework.

2 K E Y C O N C E P T S

In this section, we first introduce the key concepts and vocabulary
specific to a probabilistic formulation of the geophysical inverse
problem. We will show that the Tikhonov objective function can
be expressed in a Bayesian formulation, under the assumption of
Gaussian priors, as a posterior probability density function. We
then present our modelization choice, a Gaussian mixture model,
for representing the petrophysical information.

2.1 Tikhonov inversion and its probabilistic expression

The Tikhonov inversion (Tikhonov & Arsenin 1977) casts the in-
verse problem as an optimization problem in which an objective
function �, such as shown in eq. (1), is minimized. Using the same
notation convention as Oldenburg & Li (2005), the goal is to find a
solution m that minimizes:

minimize
m

�(m) = �d (m) + β�m(m)

such that �d (m) ≤ �∗
d

. (1)

In eq. (1), the vector m is our geophysical model, which represents
physical properties on a mesh. The term �d is the data misfit, �m

is the model regularization function and β is a positive scalar that
adjusts the relative weighting between the two terms. A value of β

is sought so that the data misfit �d is below an acceptable target
misfit �∗

d (Parker 1977).
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The geophysical data misfit �d (m) is defined using a least-
squares norm:

�d (m) = 1
2 ||Wd (F[m] − dobs)||22, (2)

where F is the forward modelling operator and dobs are the ob-
served data. The matrix Wd contains the information about the data
uncertainties but it is usually assumed that the data errors are un-
correlated and Gaussian. Wd then becomes a diagonal matrix with
elements ε−1

p where εp is the standard deviation for the pth datum.
The regularization term contends with the non-uniqueness of the

inverse problem. Here we decompose it as:

�m(m) = αs�s(m) +
∑

i∈{x,y,z}
αi�i (m), (3)

where �s is the smallness term that enforces similarity between
the model m and a reference model mref. The smoothness terms
{�i} are designed to penalize roughness of the geophysical model
along the {x, y, z} directions. The {α} scalar parameters are weight-
ing parameters for the different parts of the regularization function.
An extensive interpretation and usage of the various parameters in
this form of regularization can be found in Lelièvre et al. (2009) or
in Williams (2008).

Both smallness and smoothness are important in our work but the
smallness term will play a dynamic role. Our goal is to constrain
the value that can be possibly taken by each cell of the model. The
smallness term is thus the one of particular interest here (whereas the
smoothness terms constrain the transition from one cell to another).
We write the smallness term as:

�s(m) = 1
2 ||Ws(m − mref)||22, (4)

where the matrix Ws expresses a certain level of confidence in the
reference model locally. At locations in the model domain where
Ws is large then differences between the recovered model and the
reference model are highly penalized and vice versa.

The same objective function as in eq. (1) can equivalently be ex-
pressed in a Bayesian formulation as a posterior probability density
distribution P(m|dobs) (Tarantola 2005). A posterior distribution,
such as defined by the Bayes rule, is proportional to a likelihood
distribution P(dobs|m), representing the data misfit, times a prior
distribution P(m) (eq. 5), normalized by the multiplicative constant
1/P(dobs):

P(m|dobs) = P(dobs|m)P(m)

P(dobs)
∝ P(dobs|m)P(m) (5)

with:

P(m) = Ps(m)P{x,y,z}(m). (6)

The prior distribution represents the knowledge on the geophysi-
cal model such as a reference model, a certain level of smoothness,
etc. (eq. 6). The model m that maximizes this posterior distribution
(eq. 5) is called a MAP estimate; it is the same model that minimizes
the objective function. In contrast, a model that only maximizes a
likelihood distribution, a data misfit term with no prior, is usually
referred to as a maximum likelihood estimate (MLE).

The objective function formulation is obtained by taking the neg-
ative natural logarithm of the posterior distribution. In a Tikhonov
inversion, the data misfit as well as the priors are generally expressed
as least-squares (eqs 2 and 4). This translates into multivariate Gaus-
sian distributions for the terms of the posterior distribution (see
Fig. 2a for an unidimensional example). For a vector of parameters,
the multivariate Gaussian distribution, denoted by N , with mean μ

and covariance � (denoted σ 2 for a unidimensional Gaussian) is

Figure 2. (a) Examples of a Gaussian distribution in 1-D for one physical
property and (b) its quadratic negative-log equivalent.

Figure 3. Gaussian distributions for various confidence parameters.

defined by:

N (m|μ, �) = exp(− 1
2 ||�− 1

2 (m − μ)||22)√
(2π )n det(�)

(7)

From eq. (7), we can see that choosing Gaussian distributions
as priors and likelihood leads to a least-squares form of the terms
in eq. (1), through the application of a negative natural logarithm,
as displayed in eqs (2) or (4). This transformation is illustrated in
Fig. 2. The summation of those terms shown in eq. (1) is simply a
consequence of the fundamental property of the logarithm function,
the multiplications become additions. A detailed derivation can be
found is Appendix A.

In this context, the prior distribution and the regularization are
equivalent. The prior distribution Ps is equivalent to the smallness
term defined in 4. It can be expressed as a multivariate Gaussian
distribution. Its mean is the reference model mref and its covariance
is the weighting matrix (W T

s Ws)−1. The factor βαs expresses our
confidence in this prior (eq. 8). Increasing this confidence parame-
ter βαs is equivalent to reducing the variance around the reference
model and thus the recovered solution becomes closer to the refer-
ence (such as illustrated in Fig. 3).

Ps(m) = N (m|mref, (βαs W T
s Ws)−1) (8)

or equivalently:

Ps(m) ∝ N (m|mref, (W T
s Ws)−1)βαs (9)

Defining the smallness prior as a least-squares term such as in
eq. (4) thus assumes a Gaussian distribution of the model m values
around the reference model. This is unlikely to correspond to the
true physical property distribution, especially when the initial model
is a half-space as commonly used. With the Tikhonov approach, the
incorporation of knowledge about the physical properties can only
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be done locally at fixed locations defined by the users (Lelièvre et al.
2009). A more versatile method is required.

Our focus is on designing a more meaningful and dynamically
updatable prior for the smallness termPs(m) when non-geophysical
data are available but not necessarily well located. This will allow us
to guide the model m towards producing an expected petrophysical
distribution as well as capturing geological features. The inclusion
of various types of information is done through the prior distribu-
tion. Our goal is thus to characterize each optimization process in
Fig. 1 as a MAP estimate. We have addressed the geophysical inver-
sion problem (Fig. 1, process 1). We now focus on the petrophysical
characterization and geological identification.

2.2 Gaussian mixture model representation of
petrophysical information

To include physical property information into the inversion, we
first need to define a way to model the physical property distribu-
tions. Our choice is to use a Gaussian mixture model, where each
geological unit’s physical property is represented by a Gaussian
distribution.

Consider that we are given a petrophysical data set. We have
n samples, denoted {si, i = 1..n}, which represent the measured
physical properties. For each sample we know its current geological
classification. This is denoted by j = {1..c} where c is the number
of distinct geological units. We can use the geological classification
as a categorical variable. A sample i belonging to unit j is noted
si ∈ j.

For each geological unit j, we can fit a Gaussian probability den-
sity distribution. If the unit does not follow a Gaussian distribution,
we can often project the physical properties into a transformed space
where it appears approximately Gaussian, such as a log-space for
electrical conductivity or magnetic susceptibility [see the notion of
mapping in the SimPEG framework as defined in Cockett et al.
(2015) and Kang et al. (2015)]. With known labels, the MLE of the
Gaussian distribution parameters for each unit j = {1..c}, its mean
μj and its variance σ 2

j (or standard deviation σ j), plus its proportion
π j among the data set, are given in eqs (10)–(12):

π j = n j

n
(10)

μ j = 1

n j

n j∑
i=1

si∈ j (11)

σ 2
j = 1

n j

n j∑
i=1

(si∈ j − μ j )
2, (12)

where the si ∈ j are our nj physical property measurements for
each geological unit j.

The full probability function to observe an unlabeled physical
property data point si can be written as a GMM (see also Figs 4a
and b):

P(si |	) =
c∑

j=1

π jN (si |μ j , σ
2
j ) (13)

The variable 	 holds the GMM global variables 	 ={
π j , μ j , σ

2
j

}
j=1..c

. A GMM is a parametric probability density dis-

tribution that can fit any continuous probability density distribu-
tion, when its number of clusters tends to infinity (Murphy 2012).

Figure 4. Examples of a Gaussian mixture like samples sets. (a) A GMM
with two distinct units (the approximation in eq. (20) is valid). (b) A GMM
with overlapping units, the approximation in eq. (20) is not valid.

It has gained popularity in recent years for representing geological
and petrophysical information (Grana & Della Rossa 2010; Granek
2011; Giraud et al. 2017; Grana et al. 2017).

We denote z as our categorical variable for the labels, i.e. our ge-
ological classification. We call this variable our membership. Given
an unlabeled data point s0, its membership z0 takes the value of the
geological unit with the highest probability (see eq. 14).

z0 = argmax
z∈{1.. j}

P(s0|z)P(z) (14)

with:

P(z) = πz and (15)

P(s0|z) = N (s0|μz, σ
2
z ). (16)

Note that eq. (14) defines a MAP estimate of the geological iden-
tifier z. The parameters {π j}j = 1..c represent our prior expectation of
observing a certain unit before observing s0 (eq. 15). This MAP esti-
mate will be our template for designing the geological identification
process in our framework (Fig. 1, process 3).

The only posterior distribution left to define is for the petrophys-
ical characterization process. We wish to determine MAP estimates
of the GMM parameters when labels are unknown (Fig. 1, process
2). This is done in Section 3.2.

3 G M M A S S M A L L N E S S P R I O R F O R
G E O P H Y S I C A L I N V E R S I O N

3.1 GMM prior definition

Suppose we are given petrophysical and geological information
about the geophysical model that we want to recover. Petrophys-
ical information can include mean or variance values of physical
properties for different geological units. Geological information can
consist of an expected number of distinct units or an anticipation of
encountering certain rock units in particular locations. We need to
design a prior that offers the maximum flexibility for representing
that petrophysical and geological prior knowledge.

In eq. (17) we propose a GMM that is designed to serve as
a prior on m, whose parameters are both spatially (index i) and
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lithologically (index j) dependent. Our probability function is:

M(m|	) =
n∏

i=1

c∑
j=1

P(zi = j)N (mi |μ j , w
−2
i σ 2

j ) (17)

where:

(i) c is the number of distinct rock units, or clusters.
(ii) n is the number of active cells in the mesh.
(iii) mi represents our physical property value at the ith cell.
(iv) z describes the membership to a certain rock unit.
(v) P(zi = j) represents our geological information. It is the

prior probability of observing rock unit j at location i (vector no-
tation: P(z)). It can be either constant over the whole area, then
representing an expected relative volume of each unit denoted by
the global proportion π j, or locally set if the information is available
[e.g. borehole logs, outcrops or geological modelling (see Giraud
et al. 2017)].

(vi) μj is the mean physical property of rock unit j.
(vii) w−2

i σ 2
j is the variance of the rock unit j at the ith cell. It

includes both the expected physical property variance σ 2
j of the

rock unit j globally and a local prior confidence w2
i that, at a certain

cell i, the model value mi should belong closer or farther away from
the mean μj of the rock unit j. Those w weights can be used to
include depth or sensitivity weighting.

(viii) 	 holds the GMM global variables 	 = {
π j , μ j , σ

2
j

}
j=1..c

.

Instead of adding an extra term in the objective function, we use
the previously defined GMM probability distribution (eq. 17), repre-
senting our current geological and petrophysical knowledge, as our
smallness prior. To have consistency with the Tikhonov framework,
such as that defined in eq. (8), we write:

Ps(m) ∝ M(m|	)βαs . (18)

To formulate our objective function, we apply a negative loga-
rithm to the new posterior distribution, which uses the GMM prob-
ability distribution as the smallness prior (eq. 18). The resulting
smallness term is then:

�s(m) = −
n∑

i=1

log

⎛
⎝ c∑

j=1

P(zi = j)N (mi |μ j , w
−2
i σ 2

j )

⎞
⎠ . (19)

Although we have had positive results with using the above Log-
SumExp function in the smallness regularizer (the exponential func-
tion being in the Gaussian distribution N ), there are benefits of
using the following approximation. Gaussian distributions decay
exponentially. If the units have distinguishable enough contrasts, it
is reasonable to approximate the LogSumExp function in eq. (19) by
its locally dominant quadratic term. This means considering only
the most probable rock unit for each cell given the current model
m. The other terms of the summation are deemed negligible. For
example consider the 1D physical property distributions in Fig. 4.
For the physical property distribution in Fig. 4(a), the individual
Gaussian functions representing each rock unit can locally approx-
imate the GMM extremely well. On the other hand, for the physical
property distribution displayed in Fig. 4(b), there is too much over-
lap between the two individual Gaussian components. Individually
they are not a good approximation to the full GMM distribution and
the above assumption is incorrect. In that case, one can either work
with the full expression shown in eq. (19), or potentially re-evaluate
whether the individual distributions are distinct enough to be con-
sidered as separate units. As a rule of thumb, contrasts are deemed
distinguishable enough to apply this approximation if the centres of

two clusters are separated by at least three times the largest standard
deviation. By using the parameters of the most likely cluster at each
active cell we can approximate �s(m) as:

�s(m) = 1

2
||Ws(	, z∗)(m − mref(	, z∗))||22 (20)

with:

z∗ = argmax
z

P(m|z)P(z) (21)

mref(	, z∗) = μz∗ (22)

Ws(	, z∗) = diag(w ◦ σ−1
z∗ ). (23)

Note the similarity of the smallness term in eq. (20) with the
Tikhonov formulation (eq. 4). This allows us to generate a petro-
physically and geologically guided inversion that uses traditional
algorithms, and thus can rely on the research literature on the
Tikhonov approach.

Our approach, regarding the regularized geophysical problem,
can be summarized as follows: At each iteration, we first identify
the most probable unit for each cell; we call it its membership, and
store it in the categorical vector z (eq. 21). The reference model
mref and smallness weights Ws are then updated according to the
membership z. The reference model at each cell takes the physical
property mean value of the most likely unit z∗

i (eq. 22). The small-
ness weights depend on the value of the corresponding variances
and on our local weights (e.g depth or sensitivity weighting; see
eq. (23)). These updates represent the newly acquired knowledge
on m according to the petrophysical distribution 	 and the geolog-
ical information P(z). We refer to the updated reference model as
the learned reference model. The next inversion step then pushes
each cell of the mesh towards the mean of its most probable rock
unit. The strength of the push is proportional to the variance of the
physical property for that unit (the higher the variance, the less we
push), and our weights w.

Eq. (21) defines the MAP process for the geological identification
(Fig. 1, process 3). Eqs (22) and (23) link the petrophysical and
geological information with the geophysical inversion.

One could proceed by using the means and covariances fitted on
the petrophysical data, as well as the proportions from the geological
data, to compute z, mref and Ws at each iteration (eqs 21, 22 and 23).
However when this knowledge is incomplete or uncertain, our es-
timated GMM may not be accurate. Carter-McAuslan et al. (2015)
have investigated that issue and shown that inaccurate petrophysical
information can significantly affect the recovered model. Sun & Li
(2015, 2016, 2017) partially overcome this by updating the clus-
ter centres through the iteration process; they average the observed
means in the geophysical model with the means from the petro-
physical measurements through a separate clustering optimization
problem. We generalize this approach to all of the parameters of
the GMM. In the next Section 3.2, we formulate the petrophysical
characterization step of our framework (Fig. 1, process 2) as a MAP
estimation process.

3.2 Updating the GMM

One can either consider that the GMM parameters derived from
petrophysical and geological data give the best estimation of the
true distribution, or that it is only an approximation, and additional
information can be obtained from the geophysical model during the
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inversion (Sun & Li 2015). We prefer this later approach. Since the
prior knowledge might be incomplete or only known qualitatively,
it is important to mitigate possible biases that can affect the final
recovered model (Carter-McAuslan et al. 2015). For that purpose
Sun & Li (2015) updated each cluster centre of their fuzzy C-means
clusters through a weighted average of the expected centre from
the petrophysical data with the observed centre in the geophysical
model. From a statistical view point, this resembles the use of a
MAP estimator to find the cluster means applied to the geophysical
model itself, with the addition of a conjugate prior based on the
petrophysical data. The notion of conjugate prior was first intro-
duced in Raı̈ffa & Schlaifer (1961). By definition, a prior is called
a conjugate prior to the likelihood function if the posterior belongs
to the same family of probability distributions as the prior. For
example, the Gaussian distribution is self-conjugate. This means
that if the likelihood follows a Gaussian distribution, choosing a
Gaussian prior ensures that the posterior also belongs to the same
family of probability density distributions. We use the conjugate
prior approach to formalize the update of the means done in Sun &
Li (2015) and generalize it to the other GMM parameters.

Obtaining the GMM parameters 	 is thus made part of the itera-
tive inversion process. We define the petrophysical characterization
process (Fig. 1, step 2) as a MAP estimator for 	. This MAP
estimate benefits both from the petrophysical and geological data
known prior to the inversion and the current geophysical model.
After each geophysical inversion iteration, and before updating the
membership z, we learn the mixture parameters 	 using the current
geophysical model m and our confidence in the prior knowledge
	prior. We define a posterior distribution on 	, given the geophysi-
cal model m and prior knowledge, as:

P(	|m) ∝ M(m|	)P(	). (24)

In Section 2.2, the problem of fitting a single Gaussian distri-
bution to each unit, and thus defining its petrophysical mean and
covariance, was made easy by knowing the geological unit of each
sample. A much harder problem is to recover the full multimodal
probability function described in eq. (13) when there are missing
labels. For example, in an inverted geophysical model m, most
locations for the geological units are unknown except where we
have drillholes and outcrops. In fact, this is usually the informa-
tion we are trying to determine. The categorical variable z that
represents our geological classification is now a hidden variable
that we want to find along with the GMM parameters. Cluster-
ing algorithms are especially designed for this sort of task. The
expectation–maximization (EM) Algorithm (Dempster et al. 1977)
is one of the most widely used algorithms for semi-supervised and
unsupervised learning in mixture modelling. It allows us to fit the
parameters 	 = {

π j , μ j , σ
2
j

}
j=1..c

of a mixture model to a multi-

modal distribution with partial or no labeling. The EM algorithm in
its original form is a MLE, thus no prior information is involved. To
include prior information in the algorithm, and thus find a MAP es-
timate for the posterior distribution on 	 shown in eq. (24), we use
a MAP variation of the EM algorithm (also introduced in Dempster
et al. 1977); we refer to this algorithm as the MAP-EM algorithm.

For the MAP-EM algorithm, we need to choose how to model
the prior P(	) for each type of parameter. We can follow either a
conjugate prior or semi-conjugate prior approach as described by
Murphy (2012). Each step of the MAP-EM algorithm applied to a
GMM with a conjugate or semi-conjugate prior can be understood
as a weighted average of the observed parameters with their priors.
Fig. 5 shows an example of such a MAP estimate of the GMM

Figure 5. Illustration of fitting a Gaussian mixture model with parameters
	 through the MAP-EM algorithm, given the geophysical model m and the
prior petrophysical distribution 	prior with all confidences set to unity.

parameters. We define the input of each prior function so that an
input value of unity denotes an equal weighting of the observed and
prior distributions. We refer to those input values as our confidences
in the GMM prior parameters. Confidences of zero in the prior
generate a MLE estimator; the prior parameters are not taken into
account and the algorithm reverts to the normal EM algorithm.
Infinite confidences in the prior fix the GMM’s parameters equal to
their priors value.

The MAP-EM algorithm is an iterative process. We initialize
by starting with the parameters determined at the previous cycle.
The usual stopping criteria defined in the literature for the MAP-
EM algorithm is to define a minimum increase of the posterior
probability density value. At each MAP-EM iteration (k), we first
compute the responsibility {nij}j = 1..c, i = 1..n of each cluster j for each
point mi. This is referred as the E-step in the EM algorithm and it
stays unchanged in its MAP-EM variation:

n(k)
i j = P(zi = j)(k−1)N (mi |μ j

(k−1), (σ 2
j )(k−1))∑c

t=1 P(zi = t)(k−1)N (mi |μt
(k−1), (σ 2

j )(k−1))
. (25)

We then compute the MAP-EM steps at iteration (k) with respect
to the global proportion weights {π j}j = 1..c, means {μj}j = 1..c and
variances

{
σ 2

j

}
j=1..c

of the GMM. These steps are referred to as

the M-step in the EM-algorithm. The MAP-EM variation M-step
includes prior information as part of the iterative update.

The global proportion weights follow a categorical distribution
whose conjugate prior is the Dirichlet distribution (eq. 26):

P(π) = Dir(ζπprior V − 1). (26)

At iteration (k), the resulting posterior estimate of {π j}j = 1..c,
given {π jprior}j = 1..c and with confidence {ζ j}j = 1..c, is shown in
eq. (27):

π
(k)
j = V (k)

j + ζ jπ j prior V

V (1 + ∑c
t=1 ζtπt prior )

(27)

with:

V (k)
j =

n∑
i=1

vi n
(k)
i j (28)

and V =
n∑

i=1

vi , (29)

where vi is the volume of the ith cell and V is the volume of the
active mesh. The addition of these volume weights is necessary
because the cells of our mesh can have different sizes. We want to
use a prior information that is mesh-independent. That is why we
use volumetric proportions instead of cell counts, which is the way
the EM algorithm is usually implemented.

The full conjugate priors of the likelihood function in eq. (24) for
the means and variances are not independent of each other and they
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follow a normal-inverse-gamma distribution (Murphy 2012). How-
ever using the full conjugate prior approach for the variances can be
harmful in the first few iterations. Mean values from models at early
iterations may be far from their final target values and that would
drive the GMM estimated by MAP-EM to have very high variances
(to compensate for the difference between the observed and prior
means) and thus compromise the clustering (see Appendix B, for
further details).

To avoid this issue, a semi-conjugate prior approach is possible
where the dependency of the means and variances is avoided by
using the conditional distributions as priors. In this case the semi-
conjugate prior for the means follows a Gaussian distribution (eq.
30) while the semi-conjugate prior for the variances follows an
inverse-gamma distribution (eq. 31). As usually done in the statistics
literature (Murphy 2012), we use an alternative parametrization
of the inverse-gamma distribution called the inverse chi-squared
distribution. This re-parametrization allows for a simpler definition
of the parameters. The semi-conjugate priors for the means and
variances, with respective confidences {κ} and {ν}, are:

P(μ|σ 2) = N (μ|μprior , (κπprior V )−1) (30)

and:

P(σ 2|μ) = X−2(σ 2|νπprior V, σ 2
prior ). (31)

Note that if we put prior information only on the means, or only on
the variances, then this is a full conjugate prior. The semi-conjugate
prior approach arises only when we put prior information on both
means and variances (meaning that {κ} and {ν} are both non zero).

The update of the means is the same for both the full conjugate
and semi-conjugate prior approaches. The current (k) posterior es-
timate of the means {μj}j = 1..c is a weighted average of the MLE
estimates

{
m̄ j

}
j=1..c

from eq. (11), using the geophysical model

as the samples, with the prior means {μjprior}j = 1..c and with confi-
dences {κ j}j = 1..c. This update to the means is shown in eq. (32):

μ
(k)
j = V (k)

j m̄(k)
j + κ jπ j prior V μ j prior

V (k)
j + κ jπ j prior V

(32)

with:

m̄(k)
j =

∑n
i=1 vi n

(k)
i j mi

V (k)
j

. (33)

For the semi-conjugate prior, the current (k) posterior estimate
of the variances

{
σ 2

j

}
j=1..c

, given in eq. (34), is a weighted average,

with confidence
{
ν j

}
j=1..c

, of the MLE estimations of the variances{
σ 2

m̄ j

}
j=1..c

from eq. (12) with their prior
{
σ 2

j prior

}
j=1..c

.

σ 2
j

(k) =
V (k)

j σ 2
m̄ j

(k) + ν jπ j prior V σ 2
j prior

V (k)
j + ν jπ j prior V

(34)

with:

σ 2
m̄

(k)

j = 1

V (k)
j

n∑
i=1

vi n
(k)
i j (mi − m̄ j

(k))2. (35)

We run fully the MAP-EM algorithm to learn a new petrophys-
ical distribution with parameters 	 = {

π j , μ j , σ
2
j

}
j=1..c

after each

iteration (t) of the geophysical inversion process, using the cur-
rent geophysical model m(t) and the prior petrophysical distribution
	prior.

This completes our derivation. Eq. (24) in particular describes
the MAP estimator for the petrophysical characterization. Our three

Figure 6 A graph approach illustrating how the various posterior distribu-
tion MAP estimate processes are interlocked with each other.

MAP estimates are interconnected through the sharing of the geo-
physical model, petrophysical distribution and geological classifi-
cation. The final framework is summarized in Fig. 6, which is the
completed version of the previous diagram (Fig. 1). The next step
is to numerically implement this procedure. That is done in the
following section.

4 N U M E R I C A L I M P L E M E N TAT I O N

Our framework defines three inverse problems that are intercon-
nected and special care is required to ensure that each is reasonably
well solved. In this section, we look at some of the essential imple-
mentation elements of this framework. A comprehensive algorithm
and a flowchart can be found in Appendix C. However, before go-
ing into the details of the pseudocode, we formalize the concept
of fitting the petrophysical and geological data and thus define a
stopping criteria for our numerical solution.

4.1 Petrophysical target misfit and inversion stopping
criteria

The smallness term, such as defined in eq. (20), measures how well
the geophysical model fits the petrophysical and geological data
through the GMM. We need to define a target for this misfit term.

For the definition and evaluation of the petrophysical target misfit,
we focus on the petrophysical and geological information contained
in the smallness term that is summarized in eqs (36)–(39) and
identified as �petro.

�petro(m) = 1

2
||Ws(	, z∗)(m − mref(	, z∗))||22 (36)

with:

z∗ = argmax
z

P(m|z)P(z) (37)

mref(	, z∗) = μz∗ (38)

Ws(	, z∗) = diag(σ−1
z∗ ). (39)

At each iteration, the ith element (mi − mref i) is a Gaussian ran-
dom variable of mean zero and variance σ 2

i . Consequently, elements
in Ws(m − mref) are Gaussian with zero mean and unit standard
deviation. Thus �petro is a chi-squared statistical parameter with
expectation:

E[�petro] = �∗
petro = n

2
. (40)
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This defines the petrophysical target misfit value �∗
petro for �petro

as being half the number of active cells n in the geophysical model
(eq. 40). As one condition for stopping our algorithm we want to
find an m for which �petro is less than or equal to �∗

petro.
The eq. (36) for evaluating the petrophysical stopping criterion

omits the weights w (eq. 20). The additional weights w are used to
include depth or sensitivity weighting, which are more related to
the physics of the survey rather than to the desired properties of the
geophysical model. We have taken two approaches; the first is to
minimize �s but keep the stopping criterion attached to �petro. The
second is to minimize and measure the stopping criterion using �s

after adjusting the target misfit value to be ||w||22/2. Thus far we
prefer the former approach because the second has lead us in cer-
tain cases to underfit the petrophysical distribution. The examples,
developed in Sections 5, all use various weighting strategies and the
�petro stopping criterion approach.

We note this stopping criterion for the petrophysical data is anal-
ogous to the geophysical data misfit criterion. The geophysical data
misfit term, such as defined in eq. (2), is also a sum of Gaussian vari-
ables with zero mean and unit standard deviation. Thus a reasonable
target misfit, such as introduced in Parker (1977), is:

�∗
d = nd

2
, (41)

where nd is the number of geophysical data.
Our algorithm stops when we have found a model that simultane-

ously has both �d and �petro equal or below their respective target
value �∗

d and �∗
petro. Reaching multiple target misfits adds a new

challenge to solving the inverse problem. We address this in the
following section as we work through the important components of
the pseudocode.

4.2 Pseudocode and Weighting strategies

At each iteration of our PGI algorithm, three inverse problems need
to be solved. Our algorithm is provided in two forms in Appendix C.
The first is a pseudocode (algorithm 1), the second is a detailed
flowchart that is linked to the pseudocode (Fig. C1). Here we discuss
some of the important elements that assist in understanding the
details of the algorithm.

4.2.1 Step 1: Initialization

We are solving three MAP problems. Each needs to be initialized
with an initial geophysical model m0, a petrophysical distribution
	0 and a membership z0, respectively. We usually have these ele-
ments consistent with each other. For example, the initial reference
model is usually the starting model. We can start from a background
half-space m0, whose value is the same as in 	0, and set z0 at the
background unit everywhere.

For the success of a geophysical inversion, the choice of the
various weighting parameters can be critical. Our framework still
uses a conventional geophysical inversion objective function, and
hence previous studies and good practices are still applicable. We
need to provide uncertainties Wd for the geophysical data least-
squares misfit term (eq. 2). The objective function (eq. 1) requires
a reference model and initial weighting parameters. A common
practice is to start with a large β and then decrease its value during
the inversion iterative process (Farquharson & Oldenburg 2004).
For the smallness and derivative weights {α}, the similarity of
our formulation with the Tikhonov approach allows us to rely on

the existing literature (e.g. Williams 2008; Lelièvre et al. 2009;
Oldenburg & Li 2005).

For the petrophysical inverse problem, we initialize the petro-
physical distribution by setting 	0 = 	prior. We thus need to design
	prior. For each unit, when petrophysical measurements or a priori
estimates are available, both the mean and variance of the GMM
cluster can be set. When no information is available, it is still re-
quired to provide some estimate for the variances. These prior vari-
ances can be thought of as petrophysical noise levels, analogous to
the geophysical noise levels. They play an essential role in deter-
mining the petrophysical target misfit and regulate the clustering of
each unit around its, to be determined, mean value. The proportions
represent geological knowledge. When they are set globally, they
represent the expected relative volume of each unit. The choice of
confidences in the prior parameters is still a challenging question
(see Section 3.2 for definitions). When the petrophysical informa-
tion is well-known, values of unity, or higher, have worked well.
When no petrophysical information is known a priori, values of
unity or above for the confidences in the prior variances are used,
while confidences in the means and proportions are set to zero. In
the examples section (Section 5) we show examples for both the
known and unknown petrophysical information cases.

The starting geological model can be determined by the starting
geophysical model and petrophysical distribution. Additional local
knowledge about the geology can be added through the choice of
local proportion values for the GMM. We show a simple demonstra-
tion through the 2-D resistivity example (Section 5.2). For example,
knowing that a unit appears at a certain location, can be added to
the inversion. For that purpose we can locally set the proportion for
this unit to unity, consequently giving a probability of zero for the
other units at that same location.

This initialization completes step 1 in our pseudocode (algorithm
1) and flowchart (Fig. C1). The next step is to evaluate our stopping
criteria and update the models.

4.2.2 Step 2–5: Check convergence and update the model

At step 2, we check if the convergence criteria �d ≤ �∗
d , and

�petro ≤ �∗
petro have been met. If these are not satisfied, then a

model update is required. We start by taking a single Gauss-Newton
step on the geophysical objective function (Nocedal & Wright 2006)
(step 3). Step 4 consists in running the MAP-EM algorithm de-
scribed in Section 3.2 to learn a new petrophysical distribution
parameters 	(t), using the updated geophysical model m(t). Finally,
at step 5 we update the membership z(t), using m(t) and 	(t) accord-
ing to eq. (21). This updates the smallness weights and reference
model for the next iteration, such as described in eqs (22) and (23).

4.2.3 Step 6: Updating β and αs

In this step, we adjust our weights so that the inversion arrives at
a solution that acceptably fits both the geophysical data and the
GMM containing the geological and petrophysical data. We have
two adjustable parameters, β and αs. The parameter β balances the
data misfit with the total regularization function, while αs allows us
to adjust the importance of the smallness term.

Our current procedure uses a computationally inexpensive heuris-
tic approach to find suitable β and αs parameters such that both
geophysical and petrophysical misfits are equal or below their re-
spective target value. We initially set β, and {α} to values we would
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use for a standard inversion. We first invoke a β-cooling to get to-
wards a solution that fits the geophysical data. Once reached, we
focus more on fitting the petrophysical data by adjusting αs.

If the geophysical data misfit term reaches a plateau before at-
taining its target, we decrease β by a predetermined factor (step 6,
first case scenario). We think of β as an outer-control parameter
since it is a weighing for the entire regularization function, which
includes smallness and gradient terms.

In our case we also want to find a solution that fits the petro-
physical and geological data. For this we fine-tune the inner-control
parameter αs. If the geophysical data misfit target �∗

d has been
reached, but not the petrophysical data misfit �∗

petro, we put more
emphasis on the smallness model term. We increase αs by a fac-
tor �∗

d/�
(t)
d (step 6, second case scenario). This is similar to the

β-warming strategy described in Fournier (2015). Generally this
allows us to focus the algorithm on reaching the petrophysical data
misfit target without significantly altering the geophysical data mis-
fit. If the geophysical data misfit is increased too much, then β is
reduced. In summary, we use αs as a fine-tuning parameter as it
is not adjusted until late stages of the inversion when the major
structures have already been identified.

4.2.4 Step 7: Final output

The algorithm stops when both the geophysical and petrophysical
misfits are below or equal to their respective targets. The PGI frame-
work outputs three quantities: the recovered geophysical model, the
learned petrophysical distribution and membership. The geophysi-
cal model fits both the geophysical data and the learned petrophysi-
cal distribution. The membership attributes a rock unit to each cell;
we refer to this categorized model as a quasi-geological model, as
proposed by Li et al. (2019).

4.2.5 Options

We have the possibility to include, or not, the learned reference
model inside the smoothness components of the objective function.
Our preferred strategy is to leave it out until we have reached the
geophysical data misfit target and when only a small fraction of the
membership z is changing. This avoids the creation of interfaces at
locations that are likely to change later in the inversion. Once the
learned reference model has stabilized we can then incorporate the
reference model into the smoothness term. It promotes the creation
of interfaces, which also help to reach the smallness target misfit if
it has not yet happened. This strategy and its effects are illustrated
in the DC resistivity example (Section 5.2).

4.3 Convergence

At each iteration, the gradient-step for the geophysical objective
function is similar to that in the Tikhonov formulation. This step is
guaranteed to be a descent direction for the objective function. The
objective function to be minimized, however, changes because the
solution of the MAP-EM problem changes the reference model and
smallness weights. Fortunately, the MAP-EM algorithm guarantees
a decrease of the smallness term at each iteration. In other words
the updated petrophysical distribution is guaranteed to be closer to
the current geophysical model than the previous distribution.

Thanks to these properties, our algorithm usually reaches the
geophysical target misfit at a rate comparable to the Tikhonov ap-
proach, and then requires only a few additional iterations to reach

the petrophysical target misfit. Each PGI example presented in the
next Section 5 runs in a number of iterations comparable to the
Tikhonov inversion while reaching both of our stopping criteria.
This is a significant result as this means applying this framework
does not necessarily end in a massive loss of efficiency.

5 E X A M P L E S

In this section, we present two synthetic examples and a field ex-
ample that illuminate important aspects of our framework. These
examples are available as part of the SimPEG package on Github at
https://github.com/simpeg-research/Astic-2019-PGI (Astic 2019).
Readers are invited to use the notebooks and reproduce the results.

The first example is a non-linear inverse problem in electromag-
netics. Magnetotelluric data (Ward & Hohmann 1988) are acquired
over a layered-earth that has sharp and smooth features. We are
provided with the true petrophysical distribution and the goal is to
use it, along with the MT data, to find a solution that has the desired
features. We present the results at the various steps of the algo-
rithm and display the updates done to the initial petrophysical and
geological models that are used to guide the geophysical inversion.

In the second example, a DC resistivity profile (Ward & Hohmann
1988) is acquired over two cylinders. We demonstrate how this
framework performs when the GMM is not known a priori. We also
use this example to show how prior geological information can be
included into the inversion.

The third example is an airborne frequency-domain electromag-
netics (FDEM) survey (Ward & Hohmann 1988) over a floodplain
in Australia potentially contaminated by saline water. We highlight
the influence of the choice of a reference model on the Tikhonov
models. We then illustrate how the PGI approach can reduce am-
biguity in the recovered features. This is achieved by constructing
models in which the earth is assumed to have a certain number of
distinct units. This sort of questions (what if there are c units?), cru-
cial for interpretation, are otherwise difficult to ask in a traditional
Tikhonov setting.

5.1 MT 1-D, layered and smooth Earth model:
demonstration of the framework

In this example, we demonstrate how to use the PGI framework
to include petrophysical information. We first highlight the gains
made in the recovered geophysical model. We then provide details
about how the PGI iterations proceed.

5.1.1 Setup

For this example, inspired by Kang et al. (2017), we want to recover
a 1-D earth model that is made up a resistive layer and a smoothly
varying unit embedded in a uniform background. The conductivity
model, which is discretized onto a mesh with 89 cells, is shown
in Fig. 7(a). The background unit has a conductivity of 0.01 S m–1

(100 
m). The resistive unit (5 × 10−3 S m–1 or 200 
m) is 900 m
thick and starts at a depth of 100 m. The smooth conductor, with
a maximum conductivity of 0.1 S m–1 (10 
m), is located between
2300 and 7560 m depth. A log-scale, which is traditional for MT, is
used.

In the MT experiment the electric and magnetic fields recorded
at the earth’s surface are combined to generate impedances. In this
example, data are collected at 25 logarithmically spaced frequen-
cies between 10−3 and 103 Hz. This generates 50 data composed
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Figure 7. Setup of the MT 1-D example: (a) true geophysical model mtrue.
The dots coincide with the cell centres in the discretized model. (b) True
model weighted histogram and prior petrophysical distribution 	prior; (c)
MT data and uncertainties.

of the real and imaginary components of the impedance for each
frequency. Unbiased Gaussian noise with a standard-deviation of 2
per cent of the data value is added. We represent those observed
data in the form of apparent conductivity and phase in Fig. 7(c).

5.1.2 Initialization

We first describe our initialization for both the Tikhonov and PGI
algorithms. For the initial geophysical model m0, we choose a uni-
form half-space with the same conductivity as the background unit.
For the PGI approach the starting membership z0 is set to the back-
ground unit everywhere. Both the Tikhonov and PGI approaches
start with the same objective function; the models after the first it-
eration are thus identical. This helps for comparing results between
the two approaches.

For the PGI approach we also need to provide a GMM to describe
our prior petrophysical and geological information 	prior. We use
the exact information from the true earth model for the means and
global proportions. For the variances, we use the true variance for
the smooth unit. This unit is characterized by a wide distribution and
thus it has a large variance. The background and the resistive unit are
characterized by single values so their true variances are zero (Dirac
distribution). We assign a standard deviation of 0.1 ln (S m–1) (or
variance of 0.01 [ln (S m–1)]2) as an acceptable level of petrophysical
noise for those two units. This prior petrophysical distribution can
be visualized in Fig. 7(b). All the parameters were estimated by
taking into account the ‘volume’ of the cells. This is necessary to
make the GMM parameters independent of the discretization. The

histogram in Fig. 7(b) and all subsequent take into account the cell
volumes and are thus referred to as weighted histograms.

We set all confidences in the prior petrophysical distribution
{ζ , κ, ν} to unity. Unity confidence parameters mean we have equal
trust in the geophysical model and in the prior information when
computing the new GMM parameters at each iteration of the petro-
physical characterization. Each new estimate of the parameters, at
each iteration of the MAP-EM algorithm (eqs 27, 32 and 34), is
thus a simple unweighted average of the observed and priors. This
allows us to see how well each parameter of the GMM is recovered
without forcing or fixing its value in the inversion.

5.1.3 Comparison of the Tikhonov and PGI results

The results of the Tikhonov and PGI algorithms are shown in Fig. 8.
The Tikhonov model is presented in Fig. 8(a) and the PGI model is
shown in Fig. 8(d). The Tikhonov inversion is smooth everywhere,
but character of units blockiness or smoothness are much better
recovered in the PGI model. Note that both algorithms started from
the same reference model. This reference model is kept constant in
the Tikhonov approach whereas the PGI algorithm updates it, along
with the smallness weights, at each iteration.

The PGI recovered petrophysical distribution (Fig. 8e) is also
much closer to the prior and true distributions, compared to the
Tikhonov result (Fig. 8b). The means, variances and proportions
of each unit are well recovered. Despite the fact that we used only
confidences of unity in the prior GMM parameters, we were able
to recover a learned petrophysical distribution that was close to
the true distribution. The recovered variance of the background
is (7.2 × 10−3 [ln (S m–1)]2). This is less than our prior value of
0.01[ ln (S m–1)2]. This means that we recovered a background con-
ductivity with a smaller variance than the one prescribed by the
prior.

In addition to being closer to the ground truth, our inversion
procedure converges in a similar manner as the Tikhonov approach
(Figs 8c and f). The PGI method took only two additional iterations,
compared to the Tikhonov approach, to reach the geophysical and
petrophysical target misfits (shown respectively in black and red in
Fig. 8f). They are reached respectively at the fifth and sixth itera-
tions. Those two Figs 8(c) and (f) also highlight that the smallness
is now a term to be minimized in the PGI. In Tikhonov we are
unconcerned about the value of �s and it usually increases when
β decreases. In PGI, �s measures how well the petrophysical and
geological information are recovered.

5.1.4 Step-by-step of the PGI iterations

The iterations of the PGI are shown in Fig. 9. Figs 9(a) and (b) show
our initialization. The initial and reference model is a half-space
with a conductivity equal to the background conductivity. The prior
and initial petrophysical distribution 	prior was described in the ini-
tialization section for this example. The first iteration (Figs 9c and d)
is the same as the first Tikhonov iteration and the current recovered
geophysical model is fairly smooth. In the Tikhonov inversion, the
reference model remains the same throughout the inversion but in
the PGI, the reference model and smallness weights are updated at
the end of each iteration. The updated reference model is determined
from the learned petrophysical distribution applied to the current
geophysical model, as described in eqs (21)–(23). The recovered
petrophysical distribution at this first iteration already distinguishes
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Figure 8. MT 1-D example results and comparison: panels (a), (b) and (c) show the recovered geophysical model, its histogram and the convergence curves,
respectively, for the Tikhonov approach. Panels (d), (e) (f) shows the same plots for the PGI approach.

three units but displays higher variances than the prior. The con-
ductivity contrasts are underestimated but the overall geological
classification is correct. The recovered geophysical model after the
second step (Figs 9e and f), with the updated reference model and
smallness weights from the previous step, starts to display the de-
sired features both spatially and in its physical property distribution;
we see a sharper resistive unit and smoother conductive unit. The
geophysical target misfit is reached at iteration 5 (Figs 9k and l) and
the parameter αs is increased. In one further step (Figs 9m and n)
both the geophysical and petrophysical target misfits are reached.
The last iteration successfully clustered the model values while con-
serving �d ≤ �∗

d . The sharp contrast of the resistive unit is well
recovered as well as the smoothness of the conductive unit. The
learned petrophysical distribution is very close to the prior distribu-
tion. It also has a lower variance for the background unit compared
to its prior value, and thus is closer to the truth.

5.2 DC 2-D, buried cylinders: Working with missing
petrophysical information and adding geological
information

In this example we illustrate the performance of our framework
when no physical property mean values are available, and compare

it to the result when full petrophysical information is available. We
then show how geological information, such as depth and thickness,
can be incorporated.

5.2.1 Setup

We apply our procedure to a 2.5-D DC resistivity problem (2-D
geology but 3-D sources) to recover two cylindrical units, one con-
ductive (with a mean resistivity of 50 
m), one resistive (with a
mean resistivity of 250 
m) embedded in a background unit with
a mean resistivity of 100 
m (see Fig. 10a). To make the model
slightly more geologically realistic, we added Gaussian noise to the
log-conductivity model. The noise had zero mean and a variance of
1 · 10−3 [ln (S m–1)]2 (see Fig. 10b).

Our survey is a dipole–dipole with electrode separation of 1 m
and 2 m (Fig. 10c). The maximum dipole separation is set to n =
16. We simulate a total of 419 resistance measurements. Unbiased
Gaussian noise, with a standard-deviation of 2% of the original
value, is added to the forwarded geophysical data. A histogram of
the apparent resistivity data is shown in Fig. 10(d).

For the inversion we limit our active cells to the region covered by
the survey data as shown in Fig. 10(a). The active mesh is composed
of 7021 cells. For the geophysical data misfit uncertainties, we used
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Figure 9. Iterations of the PGI MT 1-D example.
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Figure 10. Setup of the DC resistivity example. (a) True conductivity. (b) True petrophysical distribution. (c) DC data to be inverted. (d) Histogram of the
measured apparent resistivity. The best-fitting half-space (112 
m) is indicated by the vertical dashed line. (e) Sensitivity weights w used for all inversions.

a floor value of 10−4 V/I in addition to the 2% noise standard-
deviation.

For all of the inversions we used a sensitivity weighting that is
similar to that developed in Mehanee et al. (2005). This is used in
place of the usual smoothing weights at the surface to compensate
for the high sensitivities near electrodes. Those weights are shown
in Fig. 10(e). We use �d and �petro as stopping criteria. To illustrate
functionality, we also incorporated the learned reference model in
the smoothness term of the geophysical objective function. This was
done towards the end of the inversion, after the reference model was
stabilized and �∗

d was reached (see Algorithm 1, step 6).
To set benchmarks for the inversion results, we first carry out a

Tikhonov inversion and a PGI with full petrophysical information.
We then run a PGI without providing any information about the
physical property mean values or the proportions. We finally run
another PGI, still without means information, but with added ge-
ological information included through the use of local proportion
weights in the GMM. All inversions start with the same geophysical
objective function.

5.2.2 Tikhonov inversion

The Tikhonov inversion starts from the best fitting half-space of
112 
m, instead of the true background value of 100 
m (see
Fig. 10d). The inversion produces the result presented in Fig. 11(a).

The two bodies are detected but their edges are smoothed. This
smoothness is also visible in the histogram of the model that is
characterized by continuous values centred on the starting half-
space value (Fig. 11b). The conductivity values do not attain the
true electrical conductivity of the anomalies. The geophysical target
misfit is reached in six iterations (Fig. 11c). The parameter β was
cooled at each iteration and the smallness term kept increasing; this
is expected in the Tikhonov approach.

5.2.3 PGI with full petrophysical information

In this example we first want to establish a benchmark result by
using the true petrophysical distribution with global proportions.
We fix the petrophysical distribution at the true one (Fig. 10b) by
setting all our confidences in the petrophysical prior to infinity.
Thus 	 = 	prior = 	true is fixed for all iterations. We start from a
half-space with the true mean background value.

This benchmark inversion recovers the two cylinders (Fig. 11d)
quite well. The locations of the cylinders, their outer boundaries and
their conductivities are in reasonable agreement with the true model.
The geophysical model also satisfactorily fits the true petrophysical
distribution being imposed (Fig. 11e). The geophysical target misfit
is reached after seven iterations (Fig. 11f). An additional seven
iterations is needed to reach the petrophysical target misfit, while
keeping �d ≤ �∗

d . The two increases of �petro seen at iteration
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Figure 11. DC inversion results. The color scale is the same as for the true model in Fig. 10(a). Panels (a), (b) and (c) present the recovered model, histogram
and convergence curves, respectively, for the Tikhonov approach. Panels (d), (e) and (f) show the same plots for PGI, when the true petrophysical distribution
was provided. Panels (g), (h) and (i) show the results for PGI, when no information on the proportions or the physical property means of the units were provided.
Panels (j), (k) and (l) show how PGI, with no mean information, can be improved by adding information about the depth and thickness of the cylinders.

3 and 7 correspond to β-cooling. This was necessary since the
geophysical misfit was not decreasing enough (see algorithm 1,
step 6). The important decrease seen at iteration 11 corresponds to
the inclusion of the learned reference model in the smoothness. This
helps us reach the petrophysical target misfit. This highlights the
importance of incorporating a discontinuous reference model into
the smoothness terms so that large gradients in the model are not
penalized. This allowed for the final model to have sharp boundaries
which is consistent with the true model.

5.2.4 PGI with no physical property means information

We now consider the situation where no prior information is known,
except the expected number of units (three in this example). We can
still use our framework but we turn off the prior on the means and
proportions. The confidences {ζ , κ} are thus set to zero (no prior
information on the means or proportions). We used the true vari-
ances with infinite confidences ν in them. We thus have specified
the petrophysical noise levels, which regulate how much each unit
has to cluster around its unknown mean. This is analogous to choos-
ing an appropriate geophysical data noise level. Our inversion starts
from the best fitting half-space, as in the Tikhonov inversion, since
the true background value is now considered to be unknown.

The recovered geophysical model still displays a clustered aspect
with structures close to the ground truth (Fig. 11g). The volumes
of the two cylindrical units are overestimated. The histogram and

model show three distinct units. Without the true means informa-
tion, the recovered means of the cylinders are slightly shifted to-
wards the background value (Fig. 11h). Interestingly the recovered
mean of the background is closer to the true mean than the initial
half-space model. The number of iterations to reach both target mis-
fits is comparable to the PGI example that used full petrophysical
information.

5.2.5 PGI with geological information

Our next goal in this example is to illustrate how geological in-
formation might be included. It is motivated by the fact that, in
the two previous PGI results (using full and no petrophysical infor-
mation), the cylindrical units display various size anomalies com-
pared to the ground-truth and extend to different depths. Suppose
information about the anomalous zone’s depth and thickness are
provided. This additional information can be added to the inversion
through local proportion parameters P(z), by making them vary
with depth. At depths where the anomalous bodies are expected, we
set equal prior expectation of encountering any of the three units
(so here π = 1/3 for all three units for locations at depth between
2 and 8 m). At depths where only the background is expected,
we set $P(z = background) = 1 and P(z = cylinders) = 0. Those
proportions are summarized in Table 1. We used this prior informa-
tion in a new PGI, using the petrophysical distribution recovered
from the PGI with no mean information as 	prior.
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Table 1. Proportions of the GMM P(z) as a function of depth to include
geological information. Bckgrd: background; cond.: conductive unit; res.:
resistive unit.

Depth range (m) P(z = bckgrd) P(z = cond.) P(z = res.)

≤2 1 0 0
2−8 1/3 1/3 1/3
≥8 1 0 0

The recovered model (Fig. 11j) is similar to the PGI with no
petrophysical information except the anomalies are now restricted to
the right depths. Comparing the two learned distributions, with and
without depth information, we notice that the recovered conductivity
values from the PGI model with geological information are closer
to the ground-truth than the conductivities recovered from the PGI
with no petrophysical or geological information (Fig. 11 k). The
convergence of the algorithm is similar to the previous PGIs (Fig. 11
l).

5.3 Using PGI to reduce ambiguity: a field example

In any inversion the final result is affected by many terms and pa-
rameters in the objective function, but of particular interest here is
the choice of reference model. In a Tikhonov inversion starting from
different half-space reference models can lead to different solutions,
and this complicates the interpretation. Some of the ambiguity might
be reduced if more information is incorporated. The PGI approach
allows us to add information, such as a desired number of geolog-
ical units, that are otherwise difficult to use in a Tikhonov setting.
Adding a constraint on the number of units we wish to recover,
without incorporating other extensive geological or petrophysical
information, can be enough to reduce the realm of possible models.

We illustrate this on a field frequency-domain EM data set (Ward
& Hohmann 1988) for saline water delineation. We begin by em-
phasizing the discrepancies seen in Tikhonov models using different
half-space reference models. We then show that by using PGI and
assuming an expected number of distinct units, that starting from
different reference models leads to similar inversion results that have
consistent petrophysical distributions and simplified structures. The
lack of dependence upon the initial and initial reference models
helps to build confidence in the final images.

5.3.1 Setup

The Bookpurnong irrigation District is part of the Riverland region
of South Australia along the Murray river. The irrigation on the
highland river bank has lead to the salinization of the floodplain
soil and threatens to make the area inhospitable for vegetation (Fig.
12). The key issue is to determine if (and where) the fresh wa-
ter river is charging the aquifer (called ‘losing stream’, this is the
healthy scenario), or if the saline aquifer is charging the river, and
thus contaminating the floodplain soil (‘gaining stream’ scenario).
To help the work of hydrogeologists, various frequency and time-
domain electromagnetics surveys have been conducted to charac-
terize saline zones which are diagnosed by an increase in electrical
conductivity. High conductivities close to the surface will indicate
a ‘gaining stream’ scenario while low conductivities will be a sign
of a ‘losing stream’.

The Bookpurnong case study has been studied in previous pub-
lications (Viezzoli et al. 2009, 2010; Yang 2017). Here we focus
on the RESOLVE frequency domain data set, flown in 2008, which
covers an area of approximately 6650 m by 2400 m.

At each sounding, the RESOLVE system measures the real and
imaginary parts of the induced magnetic field for five frequencies
ranging from 382 Hz to 130.1 kHz. The survey consists of 1022
soundings, resulting in a total number of data of 10 220. For the
geophysical noise levels, we use a standard-deviation of 10 per cent
of the absolute value of the datum and add a 20 ppm floor value;
this is consistent with previous studies.

5.3.2 Inversion setup

To invert the RESOLVE data set, we choose a laterally constrained
1-D approach similar to Viezzoli et al. (2008) using the EM1D
module of the SimPEG package (Heagy et al. 2017; Kang et al.
2018). Each sounding is inverted in 1-D using a mesh with 19 layers
that extends to a depth of 187 m. The cells increase in size from
2.5 m at the surface to 25 m for the last layer. We use the thickness
of the layers as weights in the regularization, which relates to an
integral formulation of the regularizer (Oldenburg & Li 2005).

For each Tikhonov and PGI approach, we run two separate in-
versions using 0.01 S m–1 (100 
m) and 1 S m–1 (1 
m) models,
respectively, as reference models (thus four inversions are carried
out). The reference models are also used as initial models m0. The
reference model stays the same throughout the Tikhonov inversions
while the PGI algorithm updates it.

5.3.3 Tikhonov inversions

The results of the Tikhonov inversions using two different reference
models are summarized in Fig. 13. Both Tikhonov models (Figs 13a
and d) detect the river at the surface as a resistive feature; it is also
visible where the cross-section crosses the river near 459, 459.8,
460.5, 461, 461.8 and 462.5 km on Figs 13(b) and (e). Both models
also pick up highly conductive features at depth and the laterally
constrained regularization helps ensure horizontal continuity. The
ranges of conductivity are similar to those observed in boreholes
(Holland et al. 2008).

In the northwest part of the area, the recovered conductivity
models are consistent and transition smoothly from resistive at the
surface to conductive at depth. In the southeast part of the area, more
discrepancies in the two models are visible (see Section 5.3.5 for a
quantification of the discrepancies). On the plan views (Figs 13a and
d), the overall recovered conductivities in the biggest bend in the
river are an order of magnitude different between the two inversions.
Inconsistent pocket-like structures are seen in both inversions in the
cross-sections (Figs 13b and e). Both cross-sections however show
that the conductive layer is closer to the surface in the southeast
than in the northwest.

5.3.4 PGI

We now apply the PGI approach without providing specific petro-
physical information; only the number of units is specified. We show
that similar geophysical models and petrophysical distributions are
obtained even though the inversions are carried out with different
initial reference models.

As we did for the Tikhonov inversions, we now run two inversions
starting from uniform 0.01 S m–1 (100 
m) and 1 S m–1 (1 
m)
models, respectively, used as initial and initial reference models.
For the conductive and resistive reference model cases, respectively,
both the Tikhonov and PGI approaches start with the same objective
function; the models after the first iteration are thus identical.
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Figure 12. Bookpurnong survey area. The elevation of the survey area is represented as an overlaid colormap. The white arrows represent the water flow, both
of the river and from the irrigation zone. Geographic system: WGS 84 / UTM 54S. Aerial images from Google Earth, C©2019 DigitalGlobe.

For the prior petrophysical distribution, we do not specify any
prior value for the mean conductivity values nor the proportions;
their respective confidence parameters are thus set to zero. We
choose variances of 0.1[ln (S m–1)]2. We set the confidences in the
prior covariances to unity. Our goal with this choice is to recover a
model with distinct units but still reasonably smooth.

A critical point here is to choose the number of distinct units we
want to recover. We assume that there are three units, as this matches
our interpretation goal of distinguishing freshwater from salinized
water, with an additional transition zone. This adds an additional
constraint on the models we want to recover.

The PGI results are compiled in Fig. 14. All PGI have reached
their geophysical and petrophysical misfits. The recovered models
(Figs 14a and d) are more consistent with each other than those in
the Tikhonov case; we will discuss this later in Section 5.3.5.

Counterintuitively, by clustering the histograms we actually
smoothed the resulting model by forcing more homogeneity in-
side each distinct unit. Neither cross-section (Figs 14b and e) shows
the pocket-like structure in the southeast end of the profile that were
observed in the Tikhonov inversions; it indicates that those features
were not robust. The high conductivity layer is closer to the surface
in the southeast than in the northwest in both models.

The histograms and recovered petrophysical distributions
(Figs 14c and f) display several interesting characteristics. First,
we recover three distinct units that can be interpreted as fresh, tran-
sition and saline zones. The learned means of the clusters are very

similar between the two inversions. We notice that in the case of
the resistive initial models, the resistive unit conductivity has been
corrected to about 0.017 S m–1 (60 
m). The same phenomenon
happens for the conductive initial models case, with a corrected
conductive unit conductivity value of 1.35 S m–1 (0.74 
m). This
behavior was noticed in the DC example (Section 5.2) when starting
from a biased background value. The major difference between the
GMM for the two models is the variance and proportion of the most
resistive and most conductive units. This is due to the volume of the
region in the padding zones that are outside the region of influence
of the data. The values of conductivity in those regions stays close
the cluster mean which is closest to the conductivity of the initial
reference model.

5.3.5 PGI - Tikhonov comparison

In addition to the removal of unnecessary structure mentioned ear-
lier, the models recovered with the PGI approach display more
consistent subsurfaces features than do the Tikhonov models. To
quantify the similarities between models within the same method-
ology but with different initial and reference models, we adopt an
approach analogous to the depth of investigation (DOI) estimation
presented in Oldenburg & Li (1999). For the two Tikhonov and the
two PGI conductivity models, respectively, which for clarity in the
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Figure 13. Tikhonov results with two different reference models. All figures share the same color scale for conductivity. Panels (a), (b) and (c) show the
results starting from a conductive half-space. Panels (d), (e) and (f) show the result starting from a resistive half-space. Panels (a) and (d) display the recovered
geophysical models on a plan view at a depth of 8.5 m. Figs (b) and (e) display a cross-section of the recovered geophysical models. Depth of investigation
(DOI) evaluated using the method presented in Oldenburg & Li (1999). Panels (c) and (f) display the histogram of the recovered model for each inversion.

notation are referred to in the following equation as electrical resis-
tivity ρ1 and ρ2, we computed their maximum ratio r everywhere:

r = max

(
ρ1

ρ2

,
ρ2

ρ1

)
(1 ≤ r ≤ ∞). (42)

A ratio r of unity indicates similar values of conductivity. The
higher the value of r, the more the two models differs. Fig. 15 shows
the result of this two-by-two comparison. The two PGI models are

quite consistent, with ratio r values close to unity almost every-
where, except in a small area in the northwest. On the contrary
the Tikhonov inversions show significant discrepancies, even in the
near-surface, with r values greater than 2 in most of the survey area.
This is especially visible near the important bend in the river in the
southeast where discrepancies of more than an order of magnitude
(r ≥ 10) are observed (dark areas in Fig. 15). Fig. 15(j) highlights
when the Tikhonov inversions reached their DOI and where the final
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Figure 14. PGI results with two different initial and initial reference models. All figures share the same color scale for conductivity. Panels (a), (b) and (c)
show the results starting from a conductive half-space. Panels (d), (e) and (f) show the results starting from a resistive half-space. Panels (a) and (d) display the
recovered geophysical models on a plan view at a depth of 8.5 m. Panels (b) and (e) display a cross-section of the recovered geophysical models. Panels (c) and
(f) display the histogram of the recovered model and the learned petrophysical distribution for each inversion.

model is controlled mostly by the regularization. It is worth noticing
that the PGI models are still consistent past the DOI estimated from
the Tikhonov inversions (Figs 14b and e).

5.3.6 Field example summary

We demonstrated that even in the near-surface above the depth
of investigation the Tikhonov inversions had different structures

when different initial and reference models were used. With the
PGI approach, the two inversion lead to similar near-surface models
that have consistent petrophysical distributions. The removal of
structures, evidently not required by the data, and the simplification
of the geology, provides a result that is more appealing to interpret
geologically. Making a reasonable guess about the variances and the
number of units were the crucial additional information required to
achieve this. All four models point to a ‘losing stream’ scenario
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Figure 15. Consistency comparison between the two Tikhonov and the two PGI models, starting with conductive and resistive initial and reference models.
The first row displays the ratio r of the two PGI conductivity models at different depths. The bottom displays the same ratio for the two Tikhonov conductivity
models. Depths of the plan views increase from left to right. Pale yellow means the two conductivity models differ by less than a factor 2. Orange highlights
areas where the recovered conductivities differ by more than a factor 2. Dark purple emphasizes area where the two recovered conductivity models differ by
more than a factor 10.

in the northwest while three (both PGI models and the Tikhonov
inversion with a conductive reference model) indicate a ‘gaining
stream’ in the southeast. This is coherent with the conclusions given
in Viezzoli et al. (2009, 2010) and Yang (2017). To further extend
our analysis, ground-truthing the depth of the saturation salinization
zone and adding it into the PGI as geological information, or adding
petrophysical measurements, would be required.

6 D I S C U S S I O N

We have presented a framework for carrying out a petrophysically
and geologically guided inversion which allows the user to recover
a quasi-geological rock model (Li et al. 2019) and a petrophysical
distribution in addition to the geophysical model. The framework
has three main modules, each of which is formulated as a MAP es-
timate. The framework is flexible and goals, achieved by others and
using different approaches, can be incorporated while the reverse is
not true.

Carrying out an inversion that includes three separate subprob-
lems that communicate with each other, and for which two target
misfits are to be achieved, is challenging. To address this we have
provided a pseudocode as well as a flowchart in Appendix C. The
important part of the procedure is the initialization step where the
user must specify what is known, how to incorporate it, and what
they want as an end product. The examples explore those various
aspects as well as the convergence of the PGI approach.

The crucial component of our framework is to provide a differ-
ent role for the smallness component of the regularization term in
the geophysical objective function. An evolving reference model,
tied to different units in a GMM, ultimately allows this term to be
viewed as a quantitative metric for determining how well the petro-
physical and geological data are fit. This has many advantages. The
inverse problem is now solved by finding a model m and a refer-
ence model mref, along with the smallness weights, such that the

geophysical, petrophysical and geological data are fit. This compli-
cates the inversion but the procedure is greatly simplified compared
to adding additional terms, along with their adjustable hyperpa-
rameters, in the regularization. This also allows this research to
be incorporated with other developments done using the Tikhonov
approach. For example when sharp contrasts are expected, such
as in the DC example developed in Section 5.2, the effects of us-
ing sparse norms for the model gradients in the smoothness term
(Fournier & Oldenburg 2019) are worth exploring. This would allow
the combined use of petrophysical and structural data to guide the
inversion.

Our solution is achieved by first focusing on the geophysical data
misfit and solving the optimization problem at successively smaller
values of the global trade-off parameter β. In some cases, finding an
acceptable model to the geophysical data also makes the petrophys-
ical misfit sufficiently small. If it doesn’t, then we adjust αs which
controls the relative weight between the smallness and the other
components of the objective function. So far our heuristic approach
has worked satisfactorily but searching simultaneously for optimal
β and αs values such that both �d (m) 
 �∗

d and �petro(m) 
 �∗
petro

is a more advanced optimization process and deserves further re-
search. For example, Sun & Li (2018) is entirely dedicated to the
problem of refining the values of β and αs within the FCM-guided
inversion approach (Sun & Li 2015), and only for magnetic linear
problems.

Further work is also required about the best way to evaluate
the petrophysical target misfit. In our framework we minimize �s

which is a weighted petrophysical misfit. Those weights are usually
related to the physics of the survey and they are often necessary
for solving inverse problems where sensitivities are greatly varying
(e.g. in potential field data). Since we know the weights, we can
evaluate E[�s] and use that as a fitting criterion. Another option is
to evaluate �petro; this amounts to evaluating �s without weights.
Both have worked for us, but working with �petro has constantly
produced good results and it is appealing to have a stopping criterion

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/3/1989/5556947 by guest on 07 June 2024



2008 T. Astic & D.W. Oldenburg

tied only to the petrophysical and geological characteristics of the
model.

Another key component of our framework is the possibility for the
algorithm to learn all the parameters of a suitable GMM distribution
when little to no information is known a priori. The MAP-EM
algorithm has been an essential element in achieving this goal. The
minimum requirement is to provide an expected number of distinct
units and a prior petrophysical noise level for each unit.

The MAP-EM algorithm with semi-conjugate priors formalizes
the update of the means done in Sun & Li (2015) and generalizes it
to the other GMM parameters. An important aspect of our formula-
tion of the MAP-EM algorithm is the incorporation of the volume
elements into the evaluation of the GMM parameters, rather than
just working with cell-counts. Working with volumetric values en-
sures that our recovered GMM parameters are independent of the
discretization. The estimation of the GMM parameters includes a
prior weighted by our confidences in this prior, in a similar sense
that we have a confidence β in the geophysical model prior during
the geophysical inversion. So far values of unity or above for the
confidences in the variances have worked well whether or not we
knew the true petrophysical distribution. Confidences in the means
and proportions appear dependent of the quality of the prior knowl-
edge. Effects of their values is to be further investigated, as well
as if cooling or warming those parameters, similar to what is done
with β, can have an impact on the recovery or convergence.

7 C O N C LU S I O N S

We have developed a framework for carrying out petrophysically
and geologically guided inversions using a dynamic Gaussian mix-
ture model prior. Importantly we achieve our goal of incorporating
both geological and petrophysical information in geophysical inver-
sions without including an additional term in the objective function.
Rather, we update the reference model and the smallness weighting
matrix at each iteration of the geophysical model through the opti-
mization of posterior probability distributions. This allows our work
to be compatible with previous Tikhonov approaches and readily
adapted to existing inversion codes. Our flexible prior formulation
allows us to refine the petrophysical model as part of the iterative
process. Our inversion continues until the geophysical, geological
and petrophysical data are fitted. For that purpose, we have de-
fined a target misfit to measure how well the recovered geophysical
model fits the petrophysical and geological distribution. We have
presented a suite of synthetic and field examples to illustrate im-
portant aspects of our framework, especially in demonstrating how
prior petrophysical and geological information is incorporated. We
have also shown that detailed knowledge of the petrophysical or
geological properties is not required to make significant gains in
the recovered geophysical models. Our examples deal with a single
physical property but our framework has been designed to carry
out joint inversion of different types of geophysical data, as illus-
trated in Astic & Oldenburg (2018); this topic will be addressed in
a follow-up paper.

Finally, we comment upon how important the development of
open-source software packages has been for our research. It has
allowed us to benefit from the work carried out by others. The de-
velopment of the MAP-EM algorithm has been facilitated by the
MLE code available through the open source Scikit-Learn project,
a library of tools for machine-learning (Pedregosa et al. 2011). The
successful application of our methodology to various geophysical
survey methods, such as potential fields, DC, MT or FDEM, has

been made possible because of the interconnectivity of SimPEG,
an open source package to carry out geophysical inversions (Cock-
ett et al. 2015; Heagy et al. 2017; Kang et al. 2018). To ensure
reproducibility of the results in this paper, and to contribute to
the development of the open source community, we are making
the examples presented in this paper available online (Astic 2019),
through the use of Jupyter Notebooks (Perez et al. 2015). This al-
lows researchers to readily use our framework and also to contribute
to the development of inversion codes that incorporate geophysical,
geological and petrophysical data to yield meaningful solutions.
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A P P E N D I X A : F RO M A P O S T E R I O R
W I T H G AU S S I A N D I S T R I B U T I O N S T O A
L E A S T - S Q UA R E S
O B J E C T I V E - F U N C T I O N

In this appendix, we develop the operations necessary to go from
a posterior distribution formulation to an objective function in the
case of the Tikhonov inverse problem.

We stated in Section 2 that a least-squares term corresponds
to a Gaussian prior. For a vector of parameters, the multivariate
Gaussian distribution, denoted by N , with mean μ and covariance
� (denoted by σ 2 for a unidimensional Gaussian, with σ being the
standard-deviation) is:

N (m|μ, �) = exp(− 1
2 ||�− 1

2 (m − μ)||22)√
(2π )n det(�)

. (A1)
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Going from a posterior distribution to an objective function is
done by taking the negative natural logarithm of the posterior. Taking
the negative logarithm of a single Gaussian term gives:

− log(N (m|μ, �)) = 1

2
||�− 1

2 (m − μ)||22
+ log(

√
(2π )n det(�)). (A2)

The first term obtained in eq. (A2) is recognizable as a least-
squares misfit. The second term does not depend on m and is thus
a constant. As constants do not play any role in the optimization, it
is thus discarded in the objective function.

For the full Tikhonov geophysical objective function P(m|dobs),
the full posterior distributions can be written, using the Bayes rules,
as:

P(m|dobs) = P(dobs|m)P(m)

P(dobs)
(A3)

with:

P(dobs|m) = N (F[m]|dobs, (W T
d Wd )−1) (A4)

P(m) = N (m|mref, (βαs W T
s Ws)−1)N (m|mref, (βLT L)−1), (A5)

where the finite difference operator L summarizes the first or second
derivatives in all directions with their respective {α} scale. We,
respectively, express the data misfit, the smallness and smoothness
probability functions as Gaussian distributions:

N (dobs|m, (W T
d Wd )−1) = exp(− 1

2 ||Wd (F[m] − dobs)||22)√
(2π )n det([W T

d Wd ]−1)
(A6)

N (m|mref, (βαs W T
s Ws)−1) = exp(− 1

2 ||Ws(m − mref)||22)βαs√
(2π )n det([βαs W T

s Ws]−1)
(A7)

N (m|mref, (βLT L)−1) = exp(− 1
2 ||Li (m − mref)||22)β√

(2π )n det([βLT L]−1)
. (A8)

The objective function is obtained by applying the negative nat-
ural logarithm to the posterior distribution described in eq. (A3).
The summation form is simply a consequence of the fundamental
property of the logarithm function, the multiplication becomes an
addition in this new space. It follows:

�(m) = 1

2
||Wd (F[m] − dobs)||22 + βαs

2
||Ws(m − mref)||22

+β

2
||L(m − mref)||22 + Constant . (A9)

The constant term in eq. (A9) contains the constant terms for
each Gaussian distribution and the constant term log(P(dobs)).

This completes the detailed operation to go from a posterior
distribution to an objective function formulation of the Tikhonov
inverse problem.

A P P E N D I X B : C O N J U G AT E P R I O R
V E R S U S S E M I - C O N J U G AT E P R I O R F O R
M E A N S A N D VA R I A N C E S P R I O R
I N F O R M AT I O N F O R A S I N G L E
U N I VA R I AT E G AU S S I A N
D I S T R I B U T I O N

In this section, we elaborate on the difference between a full and
a semi-conjugate prior approach for estimating the parameters of a

single, 1-D, Gaussian distribution. After giving the needed defini-
tions for the full conjugate prior and how the MAP-EM updates are
affected, we illustrate the difference between semi and full conjugate
through the example displayed in Fig. B1.

We first need some definitions. The full conjugate prior for the
mean and variance follows a normal-inverse-gamma distribution
(Murphy 2012). As in Section 3.2, we use the normal-inverse chi-
squared reparametrization:

P(μ, σ 2) = NX−2(μ, σ 2|μprior , K , N , σ 2
prior ), (B1)

with the confidences K in the prior mean and N in the prior variance:

K = (κπprior V )−1 (B2)

N = νπprior V . (B3)

The update of the means in MAP-EM algorithm stays the same
as for the semi-conjugate prior approach, as detailed in eq. (32). On
the contrary the update of the variances now requires an additional
term sμ̄

(k)
j to account for the difference between the observed and

the prior means:

σ 2
j

(k) =
V (k)

j σ 2
m̄ j

(k) + ν jπ j prior V σ 2
j prior

+ sμ̄
(k)
j

V (k)
j + ν jπ j prior V

, (B4)

with:

σ 2
m̄

(k)

j = 1

V (k)
j

n∑
i=1

vi n
(k)
i j (mi − m̄ j

(k))2 (B5)

sμ̄
(k)
j = κ j V

(k)
j

κ j + V (k)
j

(m̄(k)
j − μ j prior )2. (B6)

We illustrate those concepts with Fig. B1. Let us consider the fol-
lowing setup. We have a set of observations (in our framework, this
was our geophysical model), represented through their histogram in
blue. The Gaussian distribution in blue represents the MLE param-
eters (estimated without any prior information). We now add prior
information in the form of a Gaussian distribution, in grey in the
Fig. B1. We set the confidence parameters κ and ν to unity, meaning
that we have equal confidence in the observations and the prior (ζ
is irrelevant here as we have only one Gaussian distribution). This
equal confidence can be represented by having an equal number of
samples from the prior than in the observed set. The histogram of
this prior synthetic samples set set is shown in grey.

The full conjugate prior approach can be understood as fitting
a Gaussian distribution on the data set formed by merging the ob-
served and synthetic observations; this is represented in Fig. B1 in
red. The full conjugate MAP distribution, also in red, is well centred
between the two observed and prior distribution as expected, and so
is the semi-conjugate distribution (in black). However the variance
of the red histogram, and thus of the posterior distribution with full
conjugate prior, is higher than the variance of either the observed or
prior distribution. This is due to the difference in the means of the
two distributions, which the full conjugate prior approach accounts
for (see eqs B4 and B6). The semi-conjugate prior approach con-
siders the means and variances independently (see eqs 30 and 31).
The MAP mean estimates are the same for both priors.

The semi-conjugate prior approach seems a better choice in the
context of geophysical inversion. As our goal with this framework
is to differentiate various geological units, by guiding the geophys-
ical model to reproduce certain features, the full conjugate prior
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Figure B1. A comparison of the MLE estimations of the mean and variance for a single 1-D Gaussian distribution (no prior), semi-conjugate prior and full
conjugate prior MAPs. We have observed samples in blue, along with their estimated MLE Gaussian distribution, and a prior distribution in grey. Using
confidence values of unity in the prior is similar to having an equal number of samples from the prior and in the observed data sets. A synthetic prior sample
set is represented as the grey histogram. The posterior distribution with a semi-conjugate prior is in black and is seen as an average of the parameters of the
observed and prior distributions. The posterior distribution with a full conjugate prior is in red. The red histogram is obtained by merging the observed samples
with the synthetic prior samples. This histogram corresponds to the posterior distribution with a full conjugate prior. Note that the variance is larger than for
either of the two original distributions; this results because of the difference in the means. Hist. stands for histogram; Dist. stands for distribution; Obs. stands
for observed samples.

approach is sometimes detrimental as it can drive the variance fur-
ther from the prior than what is currently seen in the model at each
iteration.

A P P E N D I X C : P S E U D O C O D E
A L G O R I T H M

We give in algorithm 1 the details of our implementation of this
framework. The optimization notions of inexact Gauss–Newton and
backtracking line search are detailed in Ascher & Greif (2011), or
in Haber (2014) for their geophysical applications.

Fig. C1 graphically summarizes in a flowchart how our frame-
work loops over the various data sets to produce a final geophysical
model with the desired petrophysical distribution and geological
features.

Figure C1. A visual pseudocode of our iterative cyclic framework to include
geological and petrophysical information into geophysical inversion. The
numbers correspond to the steps displayed in algorithm 1.
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Algorithm 1 This algorithm finds a geophysical model reproducing the geophysical, petrophysical and geological data.

1 Initialization:

• Input:

– Initial geophysical model m(0), petrophysical distributions 	(0) and geological model z(0).

• Parameters:

– Objective function: data’s noise matrix Wd , trade-off parameter β (0), prior matrices and weights {α}, {W }.
– Localized prior: specific P(zi ) for available locations i ∈ {1..n}, local weights {wi }i=1..n .
– Confidences in the petrophysical prior:

{
κ j , ν j , ζ j

}
j=1..c

for the means, variances and global proportions.
– Optimization: β-cooling factor γ (> 1), sufficient decrease rate τ (≤ 1).

• Output:

– m, 	, z.

2 while �d > �∗
d and �s > �∗

s do
3 Objective-Function Descent Step:

• Compute a model perturbation δm for 1 with the smallness defined in 20 using an inexact Gauss-Newton approach.
• Backtracking line search with a Wolfe condition to find a step-size η that satisfy a sufficient decrease of the objective function.
• Return m(t) = m(t−1) + ηδm.

4 Update Petrophysical Distribution

• Fit a new GMM 	(t) on m(t) with a confidence in the prior determined by the hyper-parameters {ζ }, {κ}, {ν} such as in eqs 27, 32 and
34 until no sufficient increase of 24 is observed.

5 Classification:

• Compute the membership z(t) of the current model m(t) as in eq. 21 using 	(t) as the classifier.
• Update mref and Ws according to 22 and 23 respectively using z(t).

6 Update weights:

if �
(t)
d > �∗

d and �
(t)
d > τ�

(t)
d then

• Decrease β: β (t) = β(t−1)

γ

else if �
(t)
d ≤ �∗

d and �s > �∗
s then

• Increase αs : α(t)
s = α(t−1)

s × �∗
d

�d
(t)

if (optional) �
(t)
d ≤ �∗

d and �s > �∗
s and z(t) == z(t−1) then

• Include mref in Smoothness

7 end

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/3/1989/5556947 by guest on 07 June 2024


