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ABSTRACT

Magnetic vector inversion (MVI) has received consider-
able attention over recent years for processing magnetic field
data that are affected by remanent magnetization. However,
the magnetization models obtained with current inversion
algorithms are generally too smooth to be easily interpreted
geologically. To address this, we have reviewed the MVI
formulated in a spherical coordinate system. We tackle con-
vergence issues posed by the nonlinear transformation from
Cartesian to spherical coordinates by using an iterative sen-
sitivity weighting approach and a scaling of the spherical
parameters. The spherical formulation allows us to impose
sparsity assumptions on the magnitude and direction of
magnetization independently and, as a result, the inversion
recovers simpler and more coherent magnetization orienta-
tions. The numerical implementation of our algorithm on
large-scale problems is facilitated by discretizing the for-
ward problem using tiled octree meshes. All of our results
are generated using the open-source SimPEG software. We
determine the enhanced capabilities of our algorithm on a
large airborne magnetic survey collected over the Kevitsa
Ni-Cu-platinum group elements (PGE) deposit. The recov-
ered magnetization direction inside the ultramafic intrusion
and in the host stratigraphy is consistent with laboratory mea-
surements and provides evidence for tectonic deformation.

INTRODUCTION

The study of magnetism in rocks has a long history in earth sci-
ences and continues to play a key role in mineral exploration and
tectonic studies (Kissel and Laj, 1989; Pueyo et al., 2016; Li et al.,
2019). Magnetic susceptibility, the ability of rocks to become mag-
netized by the geomagnetic field, is a useful property for mapping

geology under cover. To this end, a large number of data sets, from
global satellite measurements to deposit scale surveys, have been
made available over the years. These data sets have also brought
to light the prevalence of remanent magnetization: a permanent
magnetization direction acquired by certain minerals and often as-
sociated with mineral deposits such as diamondiferous kimberlites,
volcanogenic massive sulfides, and porphyry deposits (Henkel, 1991;
Enkin, 2014). The remanent component of magnetization is typically
ignored in the interpretation of magnetic data; therefore, it is often
considered as “noise” that complicates the geologic interpretation.
Meanwhile, the same remanent component has been used ex-

tensively for paleomagnetic studies and regarded as meaningful
geophysical “data.” Several researchers have used the permanent
magnetization orientation to map continental block rotation (Norris
and Black, 1961; Vine and Matthews, 1963; Kissel and Laj, 1989),
for fold and thrust belt reconstruction (Ramon et al., 2012) and in
geochronology (Henkel, 1991; Enkin, 2003; Lockhart et al., 2004).
Although these studies provide valuable information about earth’s
history, they have relied primarily on laboratory measurements per-
formed on oriented cores. Analysis based on point measurements of
magnetization direction remains a limiting factor in understanding
the spatial and temporal variability of large fold and thrust belts
systems (Pueyo et al., 2016).
Geophysical inversions provide an approach for extracting in-

formation about magnetization and constructing a 3D model of the
subsurface from observed total magnetic field intensity (TMI) data.
Imaging the shape and depth of magnetic bodies can help to identify
mineral deposits, while recovering the orientation of magnetization
can benefit paleomagnetic studies. As noted in the review by Li
(2017), inversion strategies for magnetic data put forward in the
literature can be broadly grouped into three main categories. In the
first group, the magnetization orientation of compact bodies is es-
timated through search algorithms (Fedi et al., 1994; Dannemiller
and Li, 2006), magnetic moment analysis (Helbig, 1963; Phillips,
2008), and inversion methods. The most common inversion ap-
proach uses simple parametric shapes to approximate elongated and
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tabular bodies (Foss and McKenzie, 2011; Fullagar and Pears, 2013;
Clark, 2014; Pratt et al., 2014). These methods are computationally
inexpensive and work well when the magnetic response can be iso-
lated, but, in practice, they rely heavily on experts to build and test
different scenarios; this can become impractical in complex geo-
logic settings.
The second group deals with remanence by transforming the field

data into a quantity that is weakly sensitive to the orientation of
magnetization. Magnetic amplitude data, for example, can be in-
verted for an effective susceptibility model; this approach was first
introduced by Shearer (2005, p. 52). Although the amplitude inver-
sion method has proven to be successful in identifying geologic fea-
tures (Krahenbuhl and Li, 2007; Li et al., 2010), several drawbacks
persist. First, the amplitude data must be calculated by preprocess-
ing the observed TMI data either through a Fourier transform or by
the equivalent source method (Li et al., 2014). This process may
introduce unintended biases or numerical errors into the inversion.
Second, the solution does not provide information about the direc-
tion of magnetization unless estimated in postprocessing. Third, the
conversion to amplitude removes phase information from the data.
This makes dip interpretation more difficult.
The third category, which is the focus of this study, aims to recover

a 3D distribution of magnetization vectors directly from TMI data.
Lelievre and Oldenburg (2009) introduce a magnetic vector inversion
(MVI) algorithm, implemented in Cartesian (MVI-C) and spherical
(MVI-S) coordinate systems. The MVI-C formulation is closely re-
lated to the method proposed by Kubota and Uchiyama (2005), and
later adopted by Ellis et al. (2012). This has substantially improved
the interpretation of magnetic data, and it is now frequently used in
industry. Solving for a vector model remains difficult however be-
cause it results in a large underdetermined inverse problem with three
times the number of variables (i.e., spatial components) compared
with conventional inversions. The method relies heavily on the regu-
larization function and often yields a smooth model that is too blurred
for direct geologic interpretation. To deal with this deficiency, Li and
Sun (2016) introduce a fuzzy c-means clustering technique to force
the magnetization to be in a set number of domains. Sparsity con-
straints on the vector components have been proposed, either directly
applied to the Cartesian components through Gramian constraints
(Zhu et al., 2015) or indirectly through a cooperative approach (Four-
nier, 2015, p. 101; Liu et al., 2015). These “focusing” methods have
shown success in better recovering the shape of compact bodies, but
ambiguity remains about the magnetization direction.
Lelievre and Oldenburg (2009) advocate the use of the spherical

representation so that constraints can be applied independently on
the amplitude and orientation angles. This formulation is well-
suited for incorporating sparsity and physical property constraints,
but its implementation remains challenging. The nonlinear transfor-
mation makes the inversion prone to converge to a local minimum.
The main reason is that the inversion parameters have different units
(length, radian) and their respective sensitivities vary over several
orders of magnitude. This issue has partially been addressed in Liu
et al. (2017) with a fixed scaling parameter.
In this study, we propose to address the current limitations en-

countered with the MVI-S algorithm. Building upon the work of
Liu et al. (2017), we define two scaling mechanisms: The first
addresses the differing magnitudes of parameters in spherical coor-
dinates, and the second compensates for rapid changes in the sen-
sitivity due to the nonlinearity of the problem. We demonstrate the

benefit of our iterative sensitivity reweighting strategy on a simple
two-parameter problem. Using a stable MVI-S algorithm allows us
to impose penalties on the magnetization direction and amplitude
independently, which allows us to recover compact bodies with co-
herent magnetization direction. We use a tiled octree mesh decou-
pling approach to deal with the large memory footprint of the
problem; this removes the need for compression. We first showcase
our approach on a synthetic block model. The same algorithm is ap-
plied to an airborne magnetic field data set acquired over the Kevitsa
Ni-Cu-platinum group elements (PGE) deposit, Finland. We unravel
the complex magnetic signal to recover geologic units and their mag-
netization directions, and we recover regions of high magnetization at
depth, which are in good agreement with known dunite units. The
orientation of magnetization is consistent with previously published
measurements performed on core samples. We infer tectonic defor-
mation from the orientation of magnetization recovered within the
folded host stratigraphy.

METHODOLOGY

Our goal is to image the subsurface using magnetic field data.
From Gauss’s law, the forward relation between the magnetization
and the magnetic field response can be expressed as

bðrÞ ¼ μ0
4π

Z
V
∇∇

1

r
· MdV; (1)

where b is the magnetic flux density in teslas (T) and r is the radial
distance between an arbitrary position and the magnetic source with
magnetization per unit volume M (A/m). For most geophysical ap-
plications, we do not measure the vector field b of magnetized
bodies, but rather the amplitude of the field, or TMI data, that in-
cludes the geomagnetic and secondary fields

bTMI ¼ kb0 þ bk; (2)

where b0 ¼ μ0h0 is the geomagnetic flux density. The anomalous field
data dTMA are computed by subtracting kb0k from the TMI data. Thus,

dTMA ¼ kb0 þ bk − kb0k ≈ b · b̂0: (3)

This approximation is valid so long as kbk ≪ kb0k. In matter,
the total magnetization per unit volume can be separated into its
induced and remanent components such that

M ¼ κðh0 þ hsÞ þMr; (4)

where the magnetic susceptibility κ (SI) is the physical property
describing the ability of a rock to get magnetized under an applied
field. In nature, this inducing field has two components: the earth’s
geomagnetic field h0 and secondary fields hs related to local mag-
netic anomalies. The remanent magnetization Mr is a permanent
magnetization preserved in the absence of an inducing field. This
is the quantity of interest in the field of paleomagnetism as it pre-
serves information about the inducing field direction and position of
a rock at the time of remanence acquisition.
Our goal is to recover a 3D model m describing some quantity

related to magnetization (m :¼ M) from the observed data. The in-
verse problem can be formulated as an optimization problem of the
form (Tikhonov et al., 1995, p. 7)
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min
m

ϕðmÞ ¼ ϕd þ βϕm subject to ϕd ≤ ϕ�
d: (5)

The objective function ϕðmÞ has two terms. The misfit function,

ϕd ¼
XN
i¼1

�
dprei − dobsi

σi

�
2

; (6)

measures the residual between the predicted data dpre ¼ F½m� and
observed dobs data normalized by estimated uncertainties σ. Assum-
ing that the noise and error on the data are random, our expected
target misfit ϕ�

d ¼ N, where N is the number of data. The model
objective function ϕm also known as the regularization function
is typically made up of several functions that control the magnitude
and roughness of the model. The trade-off parameter β controls the
relative importance between the two competing objectives. In this
research, we use the general lp-norm measure of the model and its
spatial gradients as our model objective function:

ϕm ¼
X

r¼s;x;y;z

αj

Z
V
wrjfrðmÞjprdV: (7)

The regularization functions fr are user-defined but most often have
the following form:

fs ¼ m; fx ¼
dm
dx

; fy ¼
dm
dy

; fz ¼
dm
dz

: (8)

Thus, fsðmÞ measures the size of m and fxðmÞ, fyðmÞ, and fzðmÞ
measure the roughness along orthogonal directions. These function-
als can also include a reference model mref , but for the sake of no-
tation we set it to zero. Weighting terms wr allow the user to adjust
the strength of the regularization function in specific regions of the
inversion domain.
The general strategy to minimize equation 5 requires that we dis-

cretize the model onto a mesh (we use m to denote the discretized
model which has length M) and find a solution such that the gra-
dient of the objective function

g ¼ ∇mϕðmÞ ¼ ∇mϕd þ β½αs∇mϕs þ αx∇mϕx

þ αy∇mϕy þ αz∇mϕz� ¼ 0: (9)

A solution to the optimization (equation 5) is found for decreasing
values of the trade-off parameter β; we stop when we find a suitable
model that reproduces the data to within a predefined tolerance:

jϕd − ϕ�
dj

ϕ�
d

≤ ηϕd
: (10)

Building upon the work presented in Fournier and Oldenburg
(2019), we solve the nonlinear problem in equation 7 by the scaled
iteratively reweighted least-squares (S-IRLS) method. The lp-norm
is approximated by the Lawson method, such that equation 7 is
expressed as a weighted least-squares regularization of the form

ϕpr
r ¼

XM
j

f2rj

ððfðk−1Þrj Þ2 þ ϵ2rÞ1−pr∕2
wj; (11)

where k denotes the iteration number and the subscript r is one of
the functions making up the regularization (e.g., s, x, y, and z). The
regularization function in equation 12 allows for the independent
mixing of norms on the complete interval 0 ≤ pr ≤ 2. This lets us
generate a suite of models with different characteristics and assess
the variability of the solution by varying the pr parameters. For
small ps values, the inversion favors compact anomalies with large
physical property contrasts while reducing the pxyz values generate
flat anomalies with sharp edges along the Cartesian directions. This
formulation greatly increases the flexibility of inversion outcomes
compared with those using conventional l2-norm measures.
We express the regularization function equation 7 in matrix

form as

ϕm ¼ P
r¼s;x;y;z

αrkWrRrDrmk22; (12)

where the gradient terms Dx;Dy, and Dz are the finite-difference
operators measuring the model roughness along the three Cartesian
directions and Ds is the identity matrix. Once again, each term may,
or may not, include a reference model mref . Hyperparameters αr
allow the user to change the relative influence of each term. In this
study, we set αr ¼ 1 for simplicity. Sparsity weights Rr are the dis-
cretized version of equation 11 and are calculated as

Rr ¼ diag½γrðDrðmðk−1ÞÞ2 þ ϵ2rÞ−ð1−pr∕2Þ�1∕2 (13)

such that weights depend on the model obtained at a previous kth
iteration. The γr scaling parameters are used to balance the contri-
bution of different lp-norms based on the maximum derivatives
such that

γr ¼
kg2rk∞
kgpr

r k∞
: (14)

In equation 14, the superscript denotes the p-value used to approxi-
mate the lp-norm used in equation 13. Our objective is to minimize
equation 12 for ϵr → 10−8, which we do along scaled gradient steps
such that each regularization term ϕr remains influential throughout
the iterative process. More details about the S-IRLS algorithm are
provided in Fournier and Oldenburg (2019).
Finally, the sensitivity weighting functions Wr are used to

counteract spatial changes in sensitivities; designing these weights
is the main focus of this research. In the work of Li and Oldenburg
(1996), a distance weighting function is used, and it is fixed at the
onset. In this study, we advocate for an iterative reweighting strat-
egy calculated directly from the sensitivity of a given problem.
Adapted from Haber et al. (1997), we formulate the sensitivity-
based weighting function:

Wr ¼ PFr
C diag

��
w

maxðwÞ
�
1∕2

�
; wj ¼

�XN
i¼1

J2ij þ δ

�
1∕2

;

(15)

where weights wj measure the sum of squares of the columns of the
sensitivity matrix

J ¼ ∂F½mðkÞ�
∂m

: (16)
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The projection matrices PFr
C average the sensitivity weights from

cell center to corresponding faces (or the identity matrix for ϕs).
A small constant δ is added to avoid singularity. This sensitivity
weighting strategy is general and adaptable to any inverse problems
in which the sensitivity matrix can be calculated explicitly.
Although the initial purpose of the sensitivity weighting function
of Li and Oldenburg (1996) is to counteract the decay of potential
fields, we will show numerically that the iterative rescaling process
can also be beneficial in improving the convergence of gradient
methods applied to nonlinear inverse problems.

Susceptibility inversion

To illustrate some challenges that remanent magnetization can
cause in magnetic inversions, we revisit the linear susceptibility
method implemented by Li and Oldenburg (1996), Pilkington
(1997), and others. As derived by Sharma (1966), the integral in
equation 1 can be evaluated analytically for the magnetic field of
a rectangular prism such that

F½m� ¼ dpre ¼ b̂T0Tm; (17)

where the matrix T ∈ R3×3 describes the linear relation between the
magnetic field components measured outside a discrete prism with
magnetization m ¼ ½mx;my;mz�T. The dot product with the nor-
malized inducing flux b̂0 handles the total magnetic anomaly
(TMA) projection. Different assumptions regarding the magnetiza-
tion in equation 4 give rise to different inverse problems. We will
assume here that the magnetic response is purely induced along
earth’s field and ignore remanent and self-demagnetization effects
(Mr ¼ hs ¼ 0). Under this assumption, the definition of magneti-
zation equation 4 simplifies to

M ¼ κh0: (18)

This assumption gives rise to a linear system relating N data, dpre,
to M discrete model cells of magnetic susceptibility κ

dpre ¼ Fκ dpre ∈ RN; F ∈ RN×M; κ ∈ RM: (19)

As an entry point to the inverse problem with remanent magnetism,
we provide a synthetic experiment. From equation 19, we generate
magnetic data on 441 stations on a 21 × 21 grid. The data are cen-
tered over a magnetized cube 25 m in width and placed 15 m below
the grid (Figure 1a). The earth is discretized in 5 m cubic cells. The
magnetization of the block is made up of an induced and a remanent

component. We set the magnetic susceptibility of the cube to be
κ ¼ 0.035 SI and the inducing flux to be b0 [50,000 nT, I: 90°,
D: 0°]. We set the remanent component equal in magnitude and
pointing along the x-axis Mr [1.4 A∕m, I: 0°, D: 90°]. This results
in a total magnetization M [2.0 A∕m, I: 45°, D: 90°] as shown in
Figure 1b. From equation 19, we calculate the TMA data with ran-
dom Gaussian noise added to simulate field conditions (σ ¼ 1 nT).
Because we are dealing with strictly positive magnetic suscep-

tibility κ, we impose bounds by the projected gradient method
(Vogel, 2002, p. 157) and use a Gauss-Newton method to solve
the inverse problem. A gradient descent direction δm is calculated
by solving

Hδm ¼ −g; (20)

where g is the gradient in equation 9 of the objective function:

g ¼ JTWT
dWdðF½mðk−1Þ� − dobsÞ

þ β
X

r¼s;x;y;z

αrDT
rRT

rWT
rWrRrDrmðk−1Þ; (21)

and H is the approximate Hessian:

∂2ϕ
∂m2

≈ H ¼ JTWT
dWdJþ β

X
r¼s;x;y;z

αrDT
rRT

rWT
rWrRrDr:

(22)

We use the conjugate gradient method (Hestenes and Stiefel, 1952)
to solve equation 20. The model update at the kth iteration is then
given by

mðkÞ ¼ mðk−1Þ þ αδm; (23)

where the step length α is found by a line-search method (Nocedal
and Wright, 1999, p. 30). The optimization problem is solved for a
sequence of β-values until the data misfit reaches the user-defined
tolerance ηϕd

defined in equation 10. Because this problem is linear
with respect to the model parameters, the sensitivity matrix simpli-
fies to

J ¼ ∂F½κ�
∂κ

¼ F (24)

and does not change as a function of iteration.

Figure 1. (a) Vertical section through the synthetic
block model (Y ¼ 0 m) with magnetization M
[2.0 A∕m; I∶45°; D∶90°] (κe ¼ 0.05 SI). Survey
points (the black dots) are placed 15 m above
the magnetic anomaly. (b) Simulated TMI data
map with random Gaussian noise added, 1 nT
standard deviation. The horizontal position of
the block is shown in black for reference.
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We begin with the conventional approach that assumes a smooth
model (ps, px, py, and pz ¼ 2). After reaching the target misfit cri-
teria in equation 10, we recover the susceptibility model shown in
Figure 2a. We note that the position of the susceptibility anomaly is
shifted to the side of the true block and appears to dip at 45° angle
toward the west. This is due to the large negative lobe introduced in
the data by the remanent component that we have ignored. Attempt-
ing to improve the solution by solving for a sparse model (ps, px,
py, and pz ¼ 0) yields the solution presented in Figure 2b. The
magnetic anomaly is imaged at the right depth, and the vertical ex-
tent is better recovered, but the position and shape of the anomaly
have not improved. In both cases, the data residual maps (Figure 2c
and 2d) show correlated signal with the location of negative data.
The inversion has difficulty in reproducing the negative anomalies
using strictly positive susceptibility subject to a vertical induc-
ing field.
The presence of remanence has long been recognized as an ob-

stacle for the geologic interpretation of magnetic data. In a mining
exploration context, having the wrong image could result in false
drilling targets, which is costly in time, resources, and confidence in
geophysical methods. These factors motivate the need for a more
robust algorithm that does not require knowledge about the orien-
tation of magnetization.

MVI-C parameters

Generalizing the susceptibility inversion, Lelievre and Oldenburg
(2009) propose a strategy to directly recover the magnetization
vector without assumptions about the orientation. They define an
effective susceptibility parameter that scales the strength of mag-
netization along orthogonal directions such that

κe ¼
M

kh0k
: (25)

Rewriting the discrete system in equation 19 in terms of three
orthogonal components of magnetization (u; v; w), we obtain the
augmented system

dpre ¼ Feκe ¼ ½FuFvFw�
2
4 κu

κv

κw

3
5 Fu;Fv;Fw ∈ RN×M;

(26)

where Fu, Fv, and Fw are the forward operators for the components
of magnetization. We are now dealing with a linear system that has
three times the number of unknown parameters compared to the
susceptibility assumption (κe ∈ R3M). The regularization function
in equation 12 becomes

ϕm ¼
X

c¼u;v;w

X
r¼s;x;y;z

αcrkWrRcrDcrPcκek22; (27)

where the projection matrices Pc select individual components of
the vector model κe. Our regularization is made up of 12 terms.
Norm measures can be applied to each Cartesian component
independently.
Keeping the same inversion methodology and smooth assump-

tions (pcs ; pcx ; pcy ; pcz ¼ 2), we recover the magnetization model
presented in Figure 3a. This solution is an improvement over the
susceptibility inversion as the bulk magnetization is recovered at
the right position and with the correct magnetization orientation
on average inside the block. However, we note that the solution
is distributed over a large volume and with a broad distribution
in magnetization direction.
To reduce the complexity of the solution, we once again resort

to the lp-norm measure (pcs ; pcx ; pcy ; pcz ¼ 0). As shown in
Figure 3b, the recovery of the block has clearly improved. It is

Figure 2. Vertical section through the recovered
susceptibility model using (a) smooth assumption
(ps; px; py; pz ¼ 2) and (b) sparse lp-norms to re-
cover a compact model (ps; px; py; pz ¼ 0). Both
solutions show an anomaly with a false dip due to
the wrong assumption of a vertical magnetization.
Data residuals for (c) the smooth and (d) compact
solution show the correlated signal with the neg-
ative data.
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important to point out, however, that the magnetization vectors are
pointing along the Cartesian directions and the anomaly is slightly
wider than the true model. In the Cartesian formulation, the direc-
tion and strength of magnetizations are coupled in the vector com-
ponents. Therefore, this formulation lacks flexibility in recovering
sparse vector along arbitrary orientations. This was the main mo-
tivation behind recent research investigating more advanced regu-
larization methodologies (Fournier, 2015, p. 101; Liu et al., 2015;
Zhu et al., 2015). We will attempt to improve this solution by de-
coupling the strength and direction of the magnetization vector with
the spherical formulation.

MVI-S parameters

As an alternative to the Cartesian formulation, Lelievre and
Oldenburg (2009) also propose the vector inversion in a spherical
coordinate system. The conversion between Cartesian to spherical
system follows the relation

u ¼ ρ cosðθÞ cosðϕÞv ¼ ρ cosðθÞ sinðϕÞw ¼ ρ sinðθÞ;
(28)

where the magnetization vector is defined by parameters of ampli-
tude (ρ) and two angles (θ, ϕ). The spherical formulation separates
the magnitude and orientation of magnetization vector, which
comes with two advantages. First, physical property constraints
from rock measurements (Koenigsberger ratio and magnetization
angle) can be easily incorporated. Second, sparsity constraints
can be applied to the magnitude and orientation independently,
potentially resulting in compact bodies with a uniform magnetiza-
tion direction in any orientation.
Despite its obvious advantages, the MVI-S method has received

little attention in the literature due to the nonlinear transformation
it introduces. We demonstrate challenges encountered with the

spherical approach on our synthetic problem. Taking the partial
derivatives of equation 26 as a function of mðρ; θ;ϕÞ yields

J ¼ ∂Fe½κe�
∂m

¼ ∂Fe½κe�
∂κe

∂κe

∂m
; (29)

where ∂ke∕∂m involves partial derivatives of trigonometric func-
tions prescribed in equation 28. The sensitivity matrix can be lin-
earized before each Gauss-Newton step as

J ¼ FeS; (30)

where the matrix S holds the partial derivatives

S ¼
2
4 cos θ cos ϕ −ρ sin θ cos ϕ −ρ cos θ sin ϕ
cos θ sin ϕ −ρ sin θ sin ϕ ρ cos θ cos ϕ

sin θ ρ cos θ 0

3
5:
(31)

With this choice of parameterization, the regularization function
becomes

ϕm ¼
X

c¼ρ;θ;ϕ

X
r¼s;x;y;z

αcrkWrRcrDcrPcmk22: (32)

We note that zero reference angle values θref and ϕref would imply a
magnetization direction pointing along the x-axis. Because we do
not want to assume a specific orientation (no ground truth), we set
αθs ¼ αϕs

¼ 0 in all our experiments such that the regularization
only penalizes the change in angle between neighboring cells.
To demonstrate the difficulties that the nonlinearity of the MVI-S

formulation can cause in the inversion, we invert our synthetic TMI
data with the wrong initial assumption m0ðρ ¼ 10−2; θ ¼ −45°;
ϕ ¼ 0°), such that the starting magnetization orientation is 90° from

Figure 3. Vertical section through the recovered
magnetization vector model using the Cartesian
formulation with (a) smooth l2-norm assumption
and (b) sparsity constraints applied on all three
Cartesian components (pis ; pix ; piy ; piz ¼ 0). The
color is scaled by the magnitude of magnetization.
The true magnetization direction is shown with a
red arrow. Data residual map calculated with the
(c) smooth and (d) compact solutions.
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the true model (Figure 4a). After convergence of the algorithm, we
recover the model shown in Figure 4b. The solution is a poor rep-
resentation of the true magnetization. Model updates were forced to
stop before reaching the target data misfit, and the optimization is
likely trapped in a local minimum. We note that most of the model
updates were performed on the amplitude ρ, with only marginal
changes on the angle of magnetization. Similar behaviors have been
documented by Lelievre and Oldenburg (2009) and later by Liu et al.
(2017), who attributed the problem to an imbalance between the
model parameters. Before attempting to implement more advanced
constraints, we make improvements to the convergence of the non-
linear MVI-S formulation.

Iterative sensitivity reweighting

To gain some insight about the issues encountered with the MVI-
S formulation, we consider a simpler two-parameter linear problem
of the form

xþ 2y ¼ 1; (33)

which we can express in matrix form as

FCmC ¼ dobs; FC ¼ ½12�; mC ¼
�
x
y

�
; dobs ¼ 1:

(34)

This defines an underdetermined linear system of equations. Just as
we did for the magnetic inverse problem, we can isolate a solution
by minimizing an objective function of the form

ϕðmÞ ¼ kFCmC − dobsk22 þ βCkmCk22: (35)

Figure 5a displays a contour map of the objective function along
with its gradients. Following the same methodology as shown in

equation 9, we find a solution such that the gradient of the objective
function ϕðmÞ vanishes

∂ϕ
∂m

¼ g ¼ ðFT
CFC þ βCIÞmC − FT

Cd
obs ¼ 0; (36)

where I is the identity matrix. The factor of 2 from the derivative of
the l2-norm is absorbed by the zero on the right side. After deter-
mining a trade-off parameter βC such that ϕd ≤ 10−3, we recover
the Cartesian model mC½x ¼ 0.2; y ¼ 0.4�. It is the solution that
minimizes the distance (evaluated with the l2-norm) between the
origin and the solution space of FC. We note that the relative mag-
nitudes of model parameters in mC reflect the size of the forward
coefficients in FC.
As previously discussed for the magnetic problem, the smallest

solution is often not satisfactory because it is strongly influenced
by the physics of the experiment. From equation 15, we can intro-
duce sensitivity-based weights to counteract this bias toward a large
y value:

WC ¼ diag

��
wC

maxðwCÞ
�
1∕2

�
; wCj

¼
�XN
i¼1

F2
ij

�
1∕2

; (37)

where WC holds the sensitivity weights added to the regularization
(wC ¼ ½1; 2�T). The new weighted objective function becomes

ϕðmÞ ¼ kFCmC − dobsk22 þ βCkWCmCk22; (38)

and the weighted gradient is

gC ¼ FT
CFCmC þ βCWT

CWCmC − FT
Cd

obs: (39)

After determining the appropriate β�C, we get the solution m�
C½x ¼

0.33; y ¼ 0.33� marked with a black circle in Figure 5a. We have

Figure 4. Vertical section through the (a) starting
model and (b) recovered magnetization vector
model in spherical coordinates with its (c) data
residual map. The inversion stopped after three
iterations, unable to further reduce the objective
function.
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reached the only solution with equal contribution from both model
parameters that also predict the data within the tolerance.
Alternatively, we can attempt to solve the same problem in a

polar coordinate system under the transformation

mP ¼ ½ρ; θ�T; x ¼ ρ cos θ; y ¼ ρ sin θ; (40)

where the polar model mP is defined by a radius ρ and an angle θ.
This is analogous to the spherical transformation performed for the
MVI-S formulation in equation 28. The objective function to be
minimized becomes

ϕðmPÞ ¼ kF½mP� − dobsk22 þ βPkWCmPk22: (41)

The inverse problem is now nonlinear with respect to the polar
model, so we solve it iteratively with the standard Gauss-Newton
procedure described in equation 20. The partial derivatives of the
forward mapping with respect to the polar coordinates are calcu-
lated by

J ¼ ∂F½mP�
∂mP

¼ ∂F½mP�
∂mC

∂mC

∂mP
¼ FCS; (42)

where the matrix S holds the partial derivatives of the model with
respect to the polar parameters

S ¼
�
cos θ −ρ sin θ
sin θ ρ cos θ

�
: (43)

The gradient of the objective function becomes

gP ¼ STFT
CF½mP� þ βPWT

CWCmP − STFT
Cd

obs: (44)

A trade-off parameter βP is determined through the cooling sched-
ule established previously. The inversion is terminated once the data
misfit falls below the tolerances ηϕd

defined in equation 10.
Because m�

C½x ¼ 0.33; y ¼ 0.33� is a desirable model, we would
like to be able to recover a similar solution in polar parameters
(m�

P½ρ ¼ 0.47; θ ¼ 0.76�). Unfortunately, as shown in Figure 5b,
the minimization process performed in polar coordinates converges
to a different solution (mP½ρ ¼ 0.67; θ ¼ 0.26�) and the iterations
steps are oscillatory. We display the equivalent iterations (the da-
shed red line) in the Cartesian space for comparison (mP

C½x ¼ 0.65;
y ¼ 0.17�). This is an unsatisfactory solution.
Our main goal is to recover the solutionm�

P, and we want to reach
it with only a few model updates. To understand why the problem
has arisen, we compare their respective gradients for a given starting
model mð0Þ

C and its equivalent polar model mð0Þ
P . In Cartesian coor-

dinates, the gradient direction is

gð0ÞC ¼ FT
CFCm

ð0Þ
C þ βCWT

CWCm
ð0Þ
C − FT

Cd
obs: (45)

Figure 5. Contour maps for the objective func-
tions of a two-parameter inverse problem solved
in (a) Cartesian and (b) polar coordinate systems.
The solid colored lines show the model updates
taken by different algorithms in their respective
coordinate systems and, in the dashed lines, the
equivalent steps in the other domain for compari-
son. Each inversion started with the same initial
model (triangle). The colors and inversions are
gray, the nonweighted Cartesian problem; black,
the sensitivity weighted Cartesian problem; red,
the nonlinear polar coordinate system with fixed
sensitivity weights; green, the polar problem with
iterative sensitivity reweighting; and blue, with the
added scaling to compensate for the dynamic
range of the parameters (see equation 51).

Figure 6. (a) Vertical section through the recov-
ered magnetization vector model in spherical co-
ordinates using sensitivity-based weighting and
(b) the corresponding data residual map. The same
poor starting model shown in Figure 4a was used,
but the algorithm converged to a solution similar
to the Cartesian solution.
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Figure 7. Vertical section through the recovered
magnetization vector model in spherical coordinates
using sensitivity-based weighting and the smooth
Cartesian solution as starting model: (a) smooth
regularization (ps ¼ px ¼ py ¼ pz ¼ 2) and
(b) sparse norms on the strength and angles of the
magnetization vector (ps ¼ px ¼ py ¼ pz ¼ 0).
By using the sparse norms, we recover a solution
that closely resembles the true model and, as ob-
served in (d), we also eliminate the coherent signal
in the residual data that is observed in (c).

Figure 8. (a) Geologic map of the Kevitsa-
Satovaara intrusive complex adapted from, with
the geologic definition provided in Table 1.
Mapped faults (dash) are shown for reference.
(b) The 2D seismic line reflection line E5 with
interpreted geologic contacts between the main
reflectors.
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We can convert these gradients to polar coordinate by multiplying
equation 45 with the matrix of partial derivatives S such that

gCP ¼ ST½FT
CFCm

ð0Þ
C þ βCWT

CWCm
ð0Þ
C − FT

Cd
obs�: (46)

We want to compare this gradient to the gradient calculated in polar
coordinates. From equation 44, and also keeping the same βC used
in the Cartesian framework, we have

gP ¼ STFT
CF½mð0Þ

P � þ βCWT
CWCm

ð0Þ
P − STFT

Cd
obs: (47)

Noting that FCm
ð0Þ
C ¼ F½mð0Þ

P � (i.e., the forward modelings are
consistent), then equations 46 and 47 are the same only if

STWT
CWCm

ð0Þ
C ≃ WT

CWCm
ð0Þ
P : (48)

We would like both sides to be roughly equal such that the gradient
direction calculated in polar space resembles the gradient direction
calculated in the Cartesian space. This is unlikely because S is a
coordinate transformation matrix whose columns can have quite
different values (see equation 43). The critical element is the speci-
fication of the regularization matrix for the polar system. Using the
regularization matrix generated for the Cartesian system is inappro-
priate. Instead, we should use the sensitivity weighting for the polar
problem. From equation 42, we had defined the polar sensitivities as
J ¼ FCS. We can define a new weighting matrix WP by

WP ¼ diag

��
wP

maxðwPÞ
�
1∕2

�
; wPj

¼
�XN
i¼1

J2ij

�
1∕2

; (49)

and our objective function to be minimized is

ϕðmPÞ ¼ kF½mP� − dobsk22 þ βPkWPmPk22: (50)

Importantly, we note that the sensitivities change at each iteration
and so WP must be continually updated. Inverting the nonlinear
problem with the iterative scaling strategies (green), we recover the
model mP½ρ ¼ 0.53; θ ¼ 0.53� (see Figure 5b). The solution has
equal parameters of ρ and θ, and we reached this solution in a few
iterations. In most applications, however, obtaining proportionality

Figure 9. Whisker plot of magnetic susceptibility measured along
279 boreholes. The colored boxes have a width scaled by the calcu-
lated standard deviation and centered on the mean value for all in-
tercepts belonging to the same lithologic classification, as defined in
Table 1. The black lines on either side define the minimum and maxi-
mum values. The different lithologies are color coded and grouped
based on their relative age and similarities in physical properties.

Figure 10. Observed TMI data over the Kevitsa
intrusion with a histogram-equalized color scale.
Geologic contacts (black), faults (dash) identified
from surface mapping and the 2D seismic line lo-
cations E5, are shown for reference. Sun shading
from the east is added to highlight subtle features
(azimuth: 270° and dip: 45°).
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between the magnitude and angle of the vector is not meaningful.
Converted to Cartesian space mP

C½x ¼ 0.46; y ¼ 0.27�, we note that
the solution is still different from m�

C.
To understand this result, we now examine equation 48 in terms

of the size of the model parameters in mP. We have used a regu-
larization function to penalize two parameters with different units:
The radius ρ ∈ ½0;∞� has units of length and angle θ ∈ ½−π; π� is in
radians. The range of values spanned by these parameters differs in

scale as depicted by the aspect ratio of Figure 5b. Handling this
disparity can be accomplished by introducing an additional weight-
ing matrix that effectively scales the variables to the same dynamic
range. We define a scaling factor between the two parameters

ω ¼ kρk∞
kθk∞

: (51)

In a general problem with lots of variables, we can evaluate kρk∞
and kθk∞ (the ratio of the largest model parameters at a given iter-
ation). Here, where we have a restricted problem of two variables
and one datum, we set this to the target (ω ¼ ρ�∕θ�). The scaled
regularization becomes

ŴP ¼ diagð½ 1 ω �ð1∕2ÞÞWP: (52)

The new scaled objective function becomes

ϕðmPÞ ¼ kF½mP� − dobsk22 þ βPkŴPmPk22: (53)

Minimizing this function, we get the model (blue) presented in
Figure 5 (mP½ρ ¼ 0.47; θ ¼ 0.74�). Converted to Cartesian space,
this solution mP

C½x ¼ 0.35; y ¼ 0.32� closely matches m�
C.

Table 1. Intervals along boreholes KV200 and KV297
reporting significant remanent magnetization.

Table 2. Summary table grouping the various lithologic units
logged from boreholes. The expected magnetic susceptibility
contrasts are derived from Figure 9.

Hole ID Interval (m) κ (SI) Inc. (°) Q

KV297 0-52.9 0.034 −42.4 [2, 10]

KV200 29.9 0.038 −50.9 5.4

Figure 11. (a) Horizontal and (b) vertical sections
through the recovered susceptibility model that
ignores the effect of remanence. The identified
lithologic contacts (black) are shown for reference.
(c) The residual map shows a strong correlation
with the negative magnetic data.

Sparse magnetic vector inversion J43

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/85/3/J33/5018501/geo-2019-0244.1.pdf
by The University of British Columbia Library user
on 06 June 2024



Scaled MVI-S algorithm

Now that we have demonstrated the benefit of an iterative sen-
sitivity reweighting of the regularization, we revisit our synthetic
magnetic problem. We invert the synthetic data once more with
the starting magnetization orientated at 90° from the true model
m0ðρ ¼ 10−2; θ ¼ −45°;ϕ ¼ 0°Þ. The recovered magnetization ob-
tained after convergence of the scaled MVIS-S algorithm with
smooth assumptions is presented in Figure 6a. We note close simi-
larities with the MVI-C solution presented in Figure 3a, with the
bulk magnetization centered around the position of the block. The
inversion took 15 iterations to converge to this solution. This is a
clear improvement over the model previously shown in Figure 4b.
From a practical standpoint, we have found that it is more effi-

cient to initialize the MVI-S algorithm with the Cartesian solution.
The linear MVI-C approach allows us to rapidly find a model that
fits the observed data, and it provides a good starting point for the

MVI-S formulation. We invert the data once more using the smooth
Cartesian solution as a starting model. Figure 7a shows the recov-
ered solution obtained after only three iterations of MVI-S. The sol-
ution closely resembles the starting Cartesian model. However, we
note that there is some correlated signal in the residual misfit map in
Figure 7c.
Having achieved a stable and reasonable solution with the

l2-norm, we can now apply sparse norms to recover a block with
a coherent magnetization direction. We vary the regularization mea-
sures on the amplitude, derivatives of amplitude, and derivatives of
angles uniformly such that (pis , pix , piy piz ¼ 0). Figure 7b presents
a section through the magnetic vector model. The shape of the
anomalous body matches the magnetic block, and the magnetiza-
tion direction is uniform and orientated at 45° inclination. In addi-
tion, the residual data map in Figure 7d shows almost no correlated
signal. In previous inversions, we showed that the data could fit
within the global tolerance ϕd ≤ ϕ�

d, but some of the important

Figure 12. Horizontal sections at ≈300 m below the topography for a suite of models using various sparsity assumptions put on the amplitude
of magnetization for ps; px;y;z ∈ ½0; 2�. Norm measures on the magnetization angle are fixed to px;y;z ¼ 0 to promote uniform magnetization
direction.
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signal could not be replicated due to the smooth regularization. We
have managed to better replicate the fields of a compact source by
using the appropriate sparse and blocky assumptions. This result
increases our confidence in our ability to accurately recover the
magnetization of geologic bodies in three dimensions, as long as
the regularization function is adaptable to the geologic settings.

CASE STUDY: KEVITSA NI-CU-PGE DEPOSIT

We demonstrate the capabilities of our inversion strategy with
an airborne magnetic survey acquired over the Kevitsa Ni-Cu-PGE
deposit, Northern Finland. The deposit was discovered in the mid-
1980s through exploration programs sponsored by the Geological
Survey of Finland. The geology of the deposit has been studied
extensively over the past three decades by using surface mapping
and borehole logging. Figure 8a presents a simplified geologic map
of the Kevitsa-Satovaara intrusive complex, adapted from Koivisto
et al. (2015). The Ni-Cu-PGE mineralization is hosted in a funnel
shaped ultramafic olivine pyroxenite (UPXO) unit, bordered to
the southwest by a gabbro (IGB) unit. The intrusion is hosted in a
layered sequence of mafic volcanic (MVS) to intermediate volcanic
(VIO) and carbonaceous phyllites (MPH) units. This sequence is
interbedded with discontinuous layers of arkose (ARK), arenite
(ARN), and felsic volcanic (FVS) units.

It is believed that the disseminated sulfide mineralization within
the UPXO unit may have precipitated from the dissolution of
Proterozoic Ni-Cu-PGE-rich MPH units and sulfur-rich evaporates
(Mutanen, 1997). From seismic reflection surveys and borehole
data, Koivisto et al. (2015) identify geologic contacts at a depth
>1 km that defines the base of the intrusion (Figure 8b). A large
dunite (UDU) block is located in the center of the intrusion. Thick
lenses of dunite below the base of the Kevitsa intrusion were iden-
tified, as well as a vertical unit between the IGB and UPXO units.
Although the extent and geometry of these UDU units are not well
understood, we expect the dunite be serpentinized and hence highly
magnetic. Table 1 provides a relative ranking of expected magneti-
zation strength based upon the compilation of 105,000 susceptibility
readings made on cores from 279 boreholes. Figure 9 summarizes
the susceptibility measurements grouped by lithologies.
The deposit is interesting from a geophysical perspective due to the

large amount of data that are acquired and made available to research-
ers: borehole petrophysical measurements, direct-current resistivity,
magnetotelluric, ground gravity and magnetic data as well as two air-
borne time-domain electromagnetic surveys (VTEM 2009, SkyTEM
2010). In this study, we focus our efforts on the magnetic data
collected during the 2009 VTEM survey, presented in Figure 10.
The inducing field parameters at the time of acquisition were
B0½A∶52; 800 nT; I∶77.5°; D∶12.2°�.

Figure 13. Vertical sections along the E5 seismic reflection line for a suite of models using various sparsity assumptions put on the amplitude
of magnetization for ps; px;y;z ∈ ½0; 2�. Norm measures on the magnetization angle are fixed to px;y;z ¼ 0 to promote a uniform magnetization
direction.
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From visual inspection, we note some obvious connections be-
tween the observed TMI data and the surface geology:

• strong magnetic signal correlated with the komatite (UKO),
UPXO, and hydrothermal (BXH)

• moderate response from the MVS and VIO
• weak fields over most of the MPH units
• large negative anomaly within the UDU and near the

southern edge of UPXO.

The strong negative field observed over the dunite unit within the
UPXO is of particular interest for this study because it is likely re-
lated to remanent magnetization. Analysis of core samples indicates
large Koenigsberger ratios and reversed magnetization direction in
the UDU unit as summarized in Table 2 (Montonen, 2012, p. 47).
It is important to note that large Koenigsberger ratios were also
measured in the lower UPXO unit, although susceptibility values
remained small. In the absence of an oriented core, no magnetic
declinations were provided. From forward modeling of magnetized
sheets, Montonen (2012) estimates that a magnetized unit with
effective susceptibility of 0.82 SI and orientated ½I ¼ −42.5°;

D ¼ 240°� could be responsible for the observed negative magnetic
anomaly.

Magnetic susceptibility model

As a first pass, we invert the TMI data for a smooth susceptibility
model (ps ¼ px ¼ py ¼ pz ¼ 2) and ignore the effects of rema-
nence. To invert this large data set, we resort to a tiled octree mesh
decoupling strategy (Haber and Schwartzbach, 2014). Sensitivity
calculations are performed on nested submeshes to reduce the
memory footprint required for the forward calculations. The dense
sensitivity matrices are stored on disk in the zarr file format and
accessed in parallel using the open-source Dask library (Dask,
2016). The combination of the forward mesh decoupling and lazy-
loading of sensitivities allows us to run large problems on a desktop
computer without the need for compression. The inversion algo-
rithm is written under the open-source SimPEG package in Python
(Cockett et al., 2015). More details regarding the algorithm are pro-
vided in Fournier (2019, p. 13). The full inversion domain com-
prises more than 500,000 cells and 17,000 data points.

Figure 14. Residual data maps for the nine inversions shown in Figures 12 and 13.
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From sections through the recovered susceptibility model, pre-
sented in Figure 11a and 11b, we note discrepancies with the known
geology:

• In plan view, the arc shaped anomaly, southwest of the de-
posit, is recovered outside the mapped UKO unit.

• Along the E5 seismic section, no susceptibility anomaly is
recovered over the central dunite. This directly contradicts
the core sample measurements made by Montonen (2012).

• The shape and extent of the large anomaly correlate poorly
with the UPXO unit interpreted by Koivisto et al. (2015)
from seismic reflectors.

It is also important to note the large correlated residuals shown in
Figure 11c. The inversion had difficulty finding a strictly positive
susceptibility model that could account for the large positive and
negative fields. This is a good indicator that the magnetic response
observed at Kevitsa cannot solely be attributed to an induced mag-
netization alone.

Magnetization vector model

To address the issues posed by remanence, we proceed with the
MVI-S algorithm. We perform a series of nine inversions with vary-
ing sparsity measures to assess the variability in the magnetization
model. Starting from a common l2-norm MVI-C model, we se-
quentially vary the combination of norms applied to the amplitude
and its derivatives for (pρs ; pρxyz ∈ ½0; 2�). In all cases, we fix
the lp-norm regularization on the derivatives of the angles
(pθxyz ; pϕxyz

¼ 0) to promote coherent magnetization orientations.
Horizontal and vertical sections through the recovered nine mag-

netization models are shown in Figures 12 and 13, respectively. The
residual data maps presented in Figure 14 show variable data fit

related to changes in assumptions carried by different regularization
functions. To simplify the analysis, we superimpose the 90th per-
centile isovalue of amplitude for each of the nine models (Fig-
ure 15). We calculate an average magnetization direction (white)
and standard deviation on the angle (red). We observe the following:

• Parts of the central dunite (UDU) unit appear to be reversely
magnetized ½κe ¼ 0.09 SI; I ¼ −52°� 15°; D ¼ 246°� 5°�.
The recovered inclination in the model cells nearest to the
published results from Montonen (2012) agree well.

• A tabular magnetic anomaly between the IGB and UPX unit,
likely related to the central dunite unit, appears to be plung-
ing toward the southeast, potentially extending below the
UPX unit as hypothesized by Koivisto et al. (2015).

• Strong magnetization recovered along the outershell of the UPX
ultramafic intrusion appears to be pointing normal to its base.

• Similar radial outward magnetization recovered along the
arc-shaped UKO unit, east of the Kevitsa deposit.

The last two remarks are interesting for a few reasons. First, strong
magnetization near the base of the ultramafic supports the presence of
magnetic UDU units below the intrusion. Second, the orientation of
magnetization pointing radially outward may be indicative of past
tectonic deformation. Under the assumption that the remanent mag-
netization component had been fairly uniform within the layered
UDU, UKO, and UPX unit at the time of formation, then the current
radiating magnetization pattern would be explained by subsequent
folding of the units. If this is the case, then it would be one of the
most complex geologic scenarios for which magnetic data inversions
have been used to infer tectonic deformation.
Although our modeling of the central dunite unit agrees with pub-

lished laboratory measurements, the cause for this reverse magneti-
zation direction remains unclear. No other lithologic units appear to

Figure 15. (a) Horizontal and (b) vertical sections through isocontours of magnetization recovered from nine mixed lp-norm inversions.
Magnetization orientation (the white arrowheads) and standard deviation on the angle (the red arrowheads) are shown. (c) Data profile along
the E5 section for the observed and predicted data calculated from the recovered models.
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share this orientation. Remagnetization after emplacement of the
ultramafic intrusion is unlikely because a similar reversed polarity
pattern would also be expected elsewhere at Kevitsa. We speculate
that the dunite block could be related to the lower UDU unit, which
would have been folded to its current subvertical location.

CONCLUSION

In this study, we introduced an iterative sensitivity reweighting
strategy to improve the convergence of the nonlinear MVI-S formu-
lation. The iterative rescaling of the regularization function associ-
ated with the amplitude and angles of magnetization was crucial to
achieve stable convergence of the algorithm. Smoother and more
robust solutions allowed us to apply compact norms on the three
model parameters independently, which greatly simplified the sol-
ution over the conventional MVI-C formulation. Despite this im-
provement, the MVI problem remains largely underdetermined.
Incorporating a priori information, either through model constraints
or joint physical properties, remains important to accurately re-
present the geology.
We demonstrated the capability of the newly accessible MVI-S

formulation on an airborne magnetic survey collected over the
Kevitsa Ni-Cu-PGE deposit. The recovered effective susceptibility
and magnetization model confirmed that the central dunite unit was
associated with strong reversed magnetization oriented roughly
[κe ¼ 0.09 SI, I ¼ −52°� 15°, D ¼ 246°� 5°]. Potentially the
most significant outcome of this case study is the recovered sparse
magnetization pointing normal to the base of the Kevitsa olivine-
pyroxenite unit. If confirmed by laboratory measurements, this
result would be one of the few paleomagnetic interpretations carried
over folded geology that is based on the inversion of airborne
magnetic data.
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