
● Geophysical data are often:
○ Collected on irregular grids
○ Collected on rugged surfaces

● Simulation and Inversion require:
○ Discretized domain
○ Accurate modeling of the physics

● Simple meshes require large amounts of cells to accurately 
represent the domain.

● Increasingly complex meshes are:
○ Increasingly difficult to construct
○ Require special visualization tools

● Many open source tools are available to tackle individual pieces of 
the entire problem

Linking open source tools for geophysical simulation and inversion in rugged topographies Joseph Capriotti1*, Johnathan Kuttai1, Dom Fournier2, Lindsey J. Heagy1, 
and the SimPEG Team 

Cockett R., S. Kang, L. J. Heagy, A. Pidlisecky, and D. W. Oldenburg, 2015, An Open Source Framework for Simulation and Gradient Based Parameter Estimation in Geophysical Applications. 
Computers and Geosciences 85(A) pp. 124-154.

Geuzaine, C. and J.-F. Remacle, 2009, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in 
Engineering 79(11), pp. 1309-1331.

Sullivan, C. B., and A. Kaszynski, 2019, PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK): Journal of Open Source Software, 4(37), 1450.

Motivation1

Consider collecting DC 
Resistivity data over 
Mt. Saint Helens

Objectives2
1: Link open-source resources to:

● Create terrain conforming meshes
● Construct numerical PDE operators
● Accurately simulate geophysical methods
● Perform inversion
● Make visual interpretations (pyvista.org)

DC Potential due to a 
dipole shown with 
electric field lines. Notice 
the distortions in the flow 
from the normal dipole 
response due to 
topographic effects.

Mesh Design3

2: Provide workflows to follow for 
designing meshes and using them 
in geophysical inversions.

discretize.simpeg.xyz

● Python package
● Support for several mesh types

○ Tensor
○ Cylindrical
○ Curvilinear
○ Quadtree
○ Octree
○ Triangular
○ Tetrahedral

● Mesh creation with tree mesh refinement options:
○ Balls - (electrode locations)
○ Lines
○ Boxes
○ Tetrahedrons
○ Surfaces - (along topography)

Gmsh

gmsh.info

● 2D and 3D mesh generator for triangular and quadrilateral meshes
● Creates geometric entities, and subsequently meshes these.
● Python interface to compiled C++ codes

● Mesh creation steps:
○ Represent topography as a surface
○ Directly embed points at electrode locations
○ Specify mesh size as a function of distance from electrode locations

● Output linked to tetrahedral mesh in discretize

Design goals
1: Fine cells near topography in the area of the survey, with less need for accurate representation at far distances.
2: Fine cells radially away from electrode locations, such that the rapidly changing potential field is accurately modeled.

Octree Mesh - 255k nodes, 300k cells
● Fast refinement operators
● Quantized representation of elevation
● Electrode locations must be interpolated

Tetrahedral Mesh - 48k nodes, 250k cells
● Fewer nodes needed (smaller system matrices)
● Elevation satisfied at all surface nodes
● Electrode locations guaranteed to fall on nodes

Simulation and Inversion4

2D Regular mesh 
representing a cross 
section through
Mt. Saint Helens

● Weak-form finite volume operators on all meshes
○ Nodal Gradients
○ Edge based inner products
○ Interpolation functions

● Code looks like the math
○ DC continuous PDE:

○ DC finite volume discrete form:

○ Python code:

● Provides derivative operations with respect to 
mesh physical properties.

● We simulate resistivity data for a high conductivity 
anomaly centered below the crater

● Simulation and inversion framework for many 
geophysical methods.

● Readily implemented geophysical methods:
○ Mesh independent definitions
○ Jacobian matrix operations

● Mesh independent spatial derivative regularization 

● Provides optimization routines

● We invert the simulated data on both the tree 
mesh and triangular mesh

G = mesh.nodal_gradient
Me_sig = mesh.get_edge_inner_product(sigma)

A = G.T @ Me_sig @ G
e = mesh.get_interpolation_matrix(source.location).sum(axis=0)

v = Solver(A) @ e

Summary5
● discretize and Gmsh used to design structured 

and unstructured meshes
● discretize constructs finite volume operators
● simpeg to perform simulation and inversion
● pyvista for visualization

● Notebook workflows are available at: 
simpeg-terrain.curve.space

References:

Join us and get involved!

conda install -c conda-forge simpeg

simpeg.xyz

slack.simpeg.xyz

github.com/simpeg

for Python users

● Attend our weekly meetings

* josephrcapriotti@gmail.com
1 University of British Columbia Geophysical Inversion Facility,
2 Mira Geoscience Ltd.

https://pyvista.org/
https://discretize.simpeg.xyz/
https://gmsh.info/
https://simpeg-terrain.curve.space/terrain-meshing-workflows
https://simpeg.xyz/
https://simpeg.xyz/
http://github.com/simpeg
mailto:josephrcapriotti@gmail.com

