
● Geophysical data are often:
○ Collected on irregular grids
○ Collected on rugged surfaces

● Simulation and Inversion require:
○ Discretized domain
○ Accurate modeling of the physics

● Simple meshes require large amounts of cells to accurately 
represent the domain.

● Increasingly complex meshes are:
○ Increasingly difficult to construct
○ Require special visualization tools

● Many open source tools are available to tackle individual pieces of 
the entire problem
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Motivation1

Consider collecting DC 
Resistivity data over 
Mt. Saint Helens

Objectives2
1: Link open-source resources to:

● Create terrain conforming meshes
● Construct numerical PDE operators
● Accurately simulate geophysical methods
● Perform inversion
● Make visual interpretations (pyvista.org)

DC Potential due to a 
dipole shown with 
electric field lines. Notice 
the distortions in the flow 
from the normal dipole 
response due to 
topographic effects.

Mesh Design3

2: Provide workflows to follow for 
designing meshes and using them 
in geophysical inversions.

discretize.simpeg.xyz

● Python package
● Support for several mesh types

○ Tensor
○ Cylindrical
○ Curvilinear
○ Quadtree
○ Octree
○ Triangular
○ Tetrahedral

● Mesh creation with tree mesh refinement options:
○ Balls - (electrode locations)
○ Lines
○ Boxes
○ Tetrahedrons
○ Surfaces - (along topography)

Gmsh

gmsh.info

● 2D and 3D mesh generator for triangular and quadrilateral meshes
● Creates geometric entities, and subsequently meshes these.
● Python interface to compiled C++ codes

● Mesh creation steps:
○ Represent topography as a surface
○ Directly embed points at electrode locations
○ Specify mesh size as a function of distance from electrode locations

● Output linked to tetrahedral mesh in discretize

Design goals
1: Fine cells near topography in the area of the survey, with less need for accurate representation at far distances.
2: Fine cells radially away from electrode locations, such that the rapidly changing potential field is accurately modeled.

Octree Mesh - 255k nodes, 300k cells
● Fast refinement operators
● Quantized representation of elevation
● Electrode locations must be interpolated

Tetrahedral Mesh - 48k nodes, 250k cells
● Fewer nodes needed (smaller system matrices)
● Elevation satisfied at all surface nodes
● Electrode locations guaranteed to fall on nodes

Simulation and Inversion4

2D Regular mesh 
representing a cross 
section through
Mt. Saint Helens

● Weak-form finite volume operators on all meshes
○ Nodal Gradients
○ Edge based inner products
○ Interpolation functions

● Code looks like the math
○ DC continuous PDE:

○ DC finite volume discrete form:

○ Python code:

● Provides derivative operations with respect to 
mesh physical properties.

● We simulate resistivity data for a high conductivity 
anomaly centered below the crater

● Simulation and inversion framework for many 
geophysical methods.

● Readily implemented geophysical methods:
○ Mesh independent definitions
○ Jacobian matrix operations

● Mesh independent spatial derivative regularization 

● Provides optimization routines

● We invert the simulated data on both the tree 
mesh and triangular mesh

G = mesh.nodal_gradient
Me_sig = mesh.get_edge_inner_product(sigma)

A = G.T @ Me_sig @ G
e = mesh.get_interpolation_matrix(source.location).sum(axis=0)

v = Solver(A) @ e

Summary5
● discretize and Gmsh used to design structured 

and unstructured meshes
● discretize constructs finite volume operators
● simpeg to perform simulation and inversion
● pyvista for visualization

● Notebook workflows are available at: 
simpeg-terrain.curve.space

References:

Join us and get involved!

conda install -c conda-forge simpeg

simpeg.xyz

slack.simpeg.xyz

github.com/simpeg

for Python users

● Attend our weekly meetings

* josephrcapriotti@gmail.com
1 University of British Columbia Geophysical Inversion Facility,
2 Mira Geoscience Ltd.
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