accelerating geophysics research in a changing climate

Lindsey Heagy

University of British Columbia

Future of Applied Geophysics
Bay Area Geophysical Society & Colorado School of Mines

UBC Vancouver is located on the traditional, ancestral, and unceded territory of the xwməθkwəyəm people

accelerating geophysics research in a changing climate

What are the "base layer" tools we can invest in as a community?

Where can we build positive feedback cycles?

Who is involved and how do we empower new contributors?

important problems

solutions & mitigating impacts: opportunities for geophysics

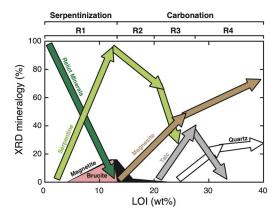
geologic storage of CO_2

groundwater

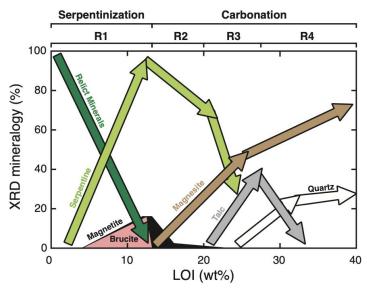
important problems

solutions & mitigating impacts: opportunities for geophysics

- electromagnetics
 - highly conductive, magnetic infrastructure
 - upscaling & physical properties
 - natural source EM
- connecting physical properties & geology
 - joint inversions
 - o opportunities with ML


- permafrost
 - Airborne EM to cover large areas
 - o IP from AEM?
- groundwater
 - monitoring
 - developing groundwater models, connecting with flow modelling
 - o low-cost methods, education

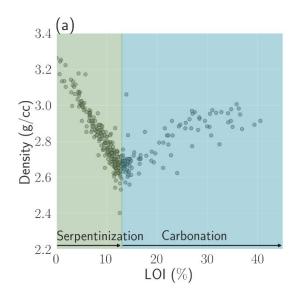
geologic storage of CO₂

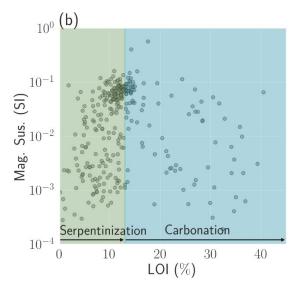

- sedimentary: depleted reservoirs, saline aquifers
- carbon mineralization: CO₂ reacts with mafic or ultramafic rocks to form carbonated minerals

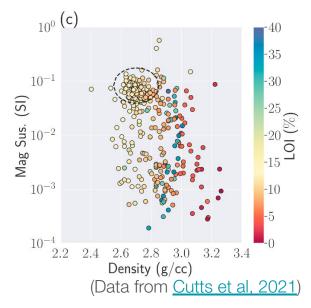
```
R1: olivine \pm orthopyroxene + H<sub>2</sub>O \rightarrow serpentine \pm brucite \pm magnetite R2: olivine + brucite + CO<sub>2</sub> + H<sub>2</sub>O \rightarrow serpentine + magnesite + H<sub>2</sub>O R3: serpentine + CO<sub>2</sub> \rightarrow magnesite + talc + H<sub>2</sub>O R4: talc + CO<sub>2</sub> \rightarrow magnesite + quartz + H<sub>2</sub>O
```


carbon mineralization

- mafic, ultramafic rocks rich in Ca, Mg can react with CO₂ to form carbonated minerals
- approaches:
 - ex-situ: bring rocks to surface (e.g. in mine tailings) where they react
 - in-situ: circulate CO₂ charged fluid to react subsurface
- Ultramafics: serpentinized rocks are reactive




(Mitchinson et al, 2020)

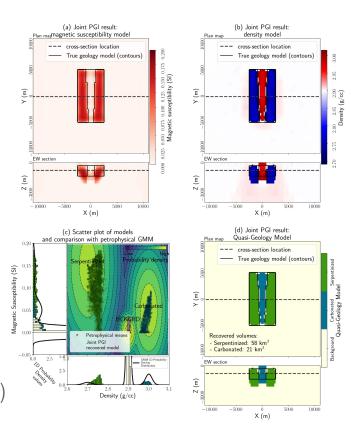

R1: olivine \pm orthopyroxene + H ₂ O \rightarrow serpentine \pm brucite \pm magnetite	serpentinization
R2: olivine + brucite + $CO_2 + H_2O \rightarrow serpentine + magnesite + H_2O$	
R3: serpentine + $CO_2 \rightarrow magnesite + talc + H_2O$	carbonation
R4: $talc + CO_2 \rightarrow magnesite + quartz + H_2O$	

carbon mineralization: physical properties

- LOI: proxy for alteration
- density, susceptibility change with LOI
- goals: delineate serpentinized rock, estimate volume (and alteration?)
- motivates joint inversion, including a-priori information in the inversion

carbon mineralization: simulations and inversions

Forward simulation:


- Finite volume operators
- OcTree meshes

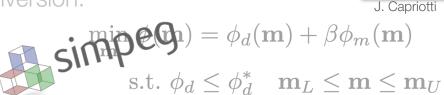
Inversion:

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$
s.t. $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$

- Sparse, Compact norms
- Joint inversions:
 - Cross-gradient
 - Petrophysically & Geologically guided Inversion (PGI)

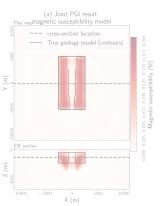
o ...

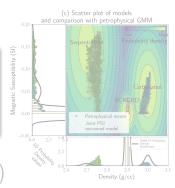
(Heagy et al., 2021)

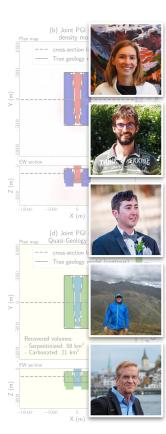

carbon mineralization: simulations and inversions

Forward simulation:

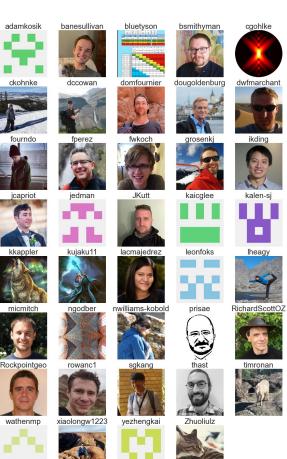
- Finite volume operators
- OcTree meshes


Inversion:





- Sparse, Compact norms
- Joint inversions:
 - Cross-gradient
 - Petrophysically & Geologically guid

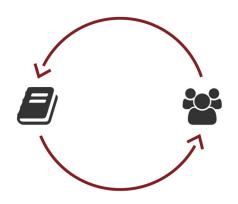


(almost!) 10 years of SimPEG

Some components for success

- Openness: free to use, adapt, extend
- Framework: organize ideas, inherit from base layers
- Modular: separate components into self-contained pieces
- **Interoperable:** enable the components to interact
- **Extensible:** build with the idea that others will do new things
- **Tested:** build confidence, scenarios where you trust the work
- Documented: provide entry points
- Community: it is about enabling people

(almost!) 10 years of SimPEG


Some transferable ideas(?)

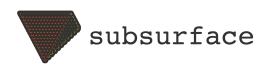
- Openness: free to use, adapt, extend
- Framework: organize ideas, inherit from base layers
- **Modular:** separate components into self-contained pieces
- **Interoperable:** enable the components to interact
- Extensible: build with the idea that others will do new things
- Tested: build confidence, scenarios where you trust the work
- Documented: provide entry points
- **Community**: it is about enabling people

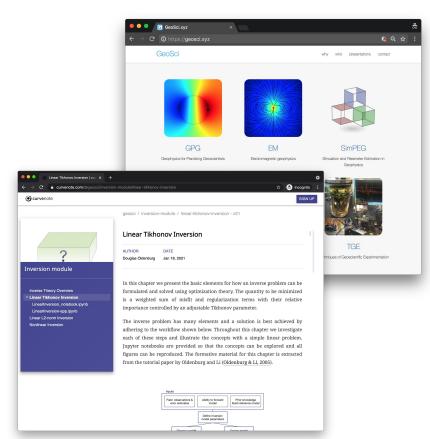
What are the "base layer" tools we can invest in as a community?

Where can we build **positive feedback** cycles?

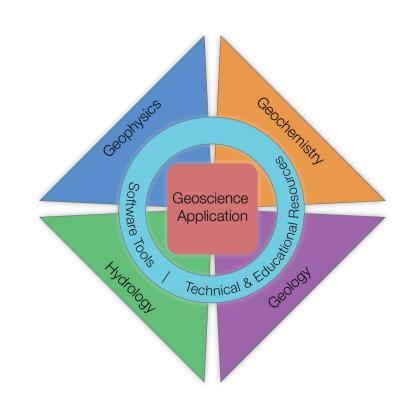
Who is involved and how do we empower new contributors?

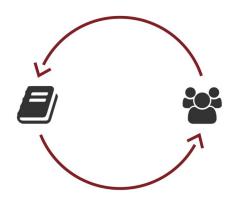
Base layers:


- software
- educational resources?
- others?



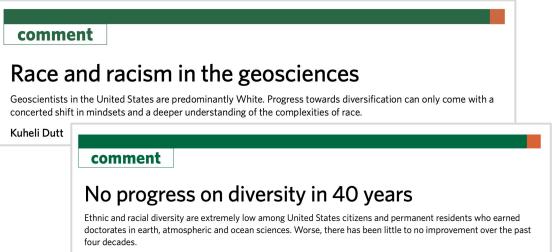
Base layers:


- software
- educational resources?
- others?



Base layers:

- software
- educational resources?
- others?
 - connections to other disciplines: engineering & geotechnical applications, monitoring...
 - challenges: communicating expectations & uncertainty

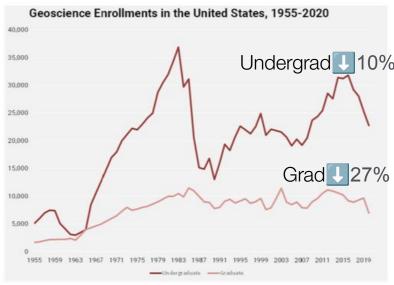


What are the "base layer" tools we can invest in as a **community**?

Where can we build positive feedback cycles?

Who is involved and how do we empower new contributors?

who is involved?


The bigger picture

In 2016, only 6% of geoscience doctorates awarded to US citizens and permanent residents went to students from underrepresented minorities, a group who made up 31% of the US population that year⁶

Rachel E. Bernard and Emily H. G. Cooperdock

U.S. Geoscience Enrollments and Degrees Collapse in 2019-2020

ways forward?

- rebranding "applied geophysics"
 - connecting with values
 - proactive on climate change solutions
 - including emphasis on technology, computation
- role of societies
 - maintain / promote brand of applied geophysics
 - engage students
 - scholarships / internships
- amplifying positive initiatives
- ...?

accelerating geophysics research in a changing climate

What are the "base layer" tools we can invest in as a community?

Where can we build positive feedback cycles?

Who is involved and how do we empower new contributors?

thank you!

Mike Wilt