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climate crisis

solutions & mitigating impacts: opportunities for geophysics

geoteohnical
(e.g. permafrost)

geologic storage of CO, groundwater



critical minerals

Alan Jones talk:
youtube.com/watch?v=T2mZpV6-8-0

connecting geologic questions to geophysics
depth: imaging under cover

Primary search methods used by Country
Non-Bulk mineral discoveries in CANADA : 1900-2019
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https://www.youtube.com/watch?v=T2mZpV6-8-o
https://minexconsulting.com/wp-content/uploads/2020/03/KEGS-Breakfast-talk-3-March-2020c.pdf

geologic storage of CO,

e sedimentary: depleted reservoirs, saline aquifers

e carbon mineralization: CO, reacts with mafic or
ultramafic rocks to form carbonated minerals

R1: olivine + orthopyroxene + Hy() — serpentine & brucite £ magnetite

R2: olivine + brucite + CO; + H20 — serpentine + magnesite + H,0O
R3: serpentine + CO; — magnesite + tale + H O

R4: talc + CO2 — magnesite + quartz + H,O

XRD mineralogy (%)

Sorpentinization Carbonation

Cutts et al., 2021;
Mitchinson et al., 2020




managing impacts: permafrost, groundwater...

e permafrost
o opportunities for AEM to cover large areas
o |P from AEM?

e groundwater
o monitoring
o developing groundwater models,
connecting with flow modelling
o low-cost methods, education in emerging
countries




research opportunities: advancing methods in geophysics

e (Questions in electromagnetics
e integrating geology, physical properties, and geophysics
e joint inversions

e role of machine learning



electromagnetics

e impacts of permeability in EM
e highly conductive targets
e upscaling & physical properties

Magnetic on-time transient electromagnetic (MoTEM) method: A feasibility study ot the Raglan

nickel mine
Aline Tavares Melo*! and Yaoguo Li'

* Departamento de Geologia, Universidade Federal de Minas Geras (UFMG ), Brazil
1Cemer for Gravizy, Electrical & Magnetic Studies (CGEM), Department of Geophysics, Colorado School of Mines

SUMMARY
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(Heagy & Oldenburg, 2021)
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electromagnetics R

10.0 Hz synthetic data
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Integrating geology, physical properties, geophysics

e post-inversion classification
e opportunities with machine learning

Susceplibiity (S1)

Melo et al., 2017
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https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0142_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0140_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0141_1(1).pdf
https://doi.org/10.1190/geo2016-0490.1
http://dx.doi.org/10.1190/segam2020-3428427.1

Integrating geology, physical properties, geophysics

Geophysical The PGI Framework Petrophysical
data data

Petrophysical
characterization (2)

e including physical property &
geologic information in inversions

e Petrophysically and Geologically
Guided Inversion (PGI)

Geophysical
inversion (1)
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an example: carbon mineralization
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an example: carbon mineralization
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how do we choose a threshold?

using: identical mesh, survey, inversion parameters, perform simulations and
inversions with a representative block.

(d) Volume of material below
a given density
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how do we choose a threshold?

Pls map (3) gravity inversion ¢,
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Z (m)

| —3000

how do we choose a threshold?

e proxy model — tool for estimating an appropriate physical property threshold

Inversion Threshold for | Threshold from | Volume estimate with
correct volume proxy proxy threshold

¢2 magnetics 0.08 SI 0.07 SI 40 km?*

fp; magnetics | 0.08 SI 0.07 SI 43 km?*

{5 gravity 2.84 g/ce 2.83 g/cc 27 km®

{01 gravity 2.81 g/cc 2.79 g/cc 27 km?

e Also of interest:

o delineating the top — ex-situ vs. in-situ
joint inversion — consistent model?
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Petrophysically and Geologically Guided Inversion

Gaussian mixture model (GMM)
Alternative approach to the inverse problem

e Dbrings in petrophysical information (GMM) e
e puilds a quasi-geology model

Geophysical The PGI Framework Petrophysical
data data

e
Geophysical Petrophysical
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Joint PGl

e Inversion fits both geophysical data
sets and petrophysical data

o Weighting strategies to balance
contributions (Astic et al, 2021)

e One quasi geology model consistent
with both data sets

e (Good estimate to top of
serpentinized rock volume
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cumulative volume estimates with depth

e Total volume of interest for CO, sequestration capacity

e Depth of practical importance for in-situ vs. ex-situ

(a) Cumulative volume of serpentinite above (b) Cumulative volume of serpentinite above
a given depth identified from susceptibility a given depth identified from density
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a sampling of research avenues

e (uestions in electromagnetics

©)

@)
@)
@)

e integrating geology, physical properties, and

strong conductors
magnetic permeability
natural source EM
large scale

geophysics & joint inversions

O

O

O

post inversion classification
PGl
non-linear inversions (EM)

e role of machine learning

geologic storage of

geotechnical
(e.g. permafrost)

groundwater



geophysics in a changing climate
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geophysics in a changing climate

https://seq.org/\WhatGeophysicistsDo

CONNECTING
Climate

THE WORLDOF .~ .
Water

The earth is continuously undergoing climate change,

The energy demand of 9 billion people is enormaous. Although water is essential for life, more than 10% of

Although alternative and renewable energy sources are the world's population lacks access to clean water but the current rate of change is expected to have an

growing in importance, hydrocarbons are needed to Without a change in water management practices, more increasing impact on humanity, Human produced CO2

maet the majority of the energy demand and are than half of the werld's population will live in areas with emisstons are a significant factor. Many SEG members
expected to be required for decades to come. The severely stressed water systems by 2050. Applied play a role in both understanding climate change and in

geophysics should play a major role in improved managing CO2 emissions, including observing glacier

management of groundwater systems, SEG programs, and ice sheet volume, studying glacier hydrology,
evaluating permafrost degradation, and evaluating and
monitoring reservoirs for CO2 sequestration.

such as Geoscientists Without Borders®, are making

important contributions to this vital area of scdietal
need

majority of population growth Is anticipated to be In
developing nations, Assuming that everyone has the
right 10 expect a good quality of life, we must strive to
ensure that there is sufficient energy avaitable to make
this possible. Applied geophysics helps provide energy
and can improve the efficiency and safety of oil and gas
operations, while reducing the environmental impact


https://seg.org/WhatGeophysicistsDo

geophysics in a changing climate

e where does geophysics fit in
interdisciplinary problems?

e Who is involved?

e what is the brand of applied geophysics?




Interdisciplinary guestions

e Technical: machine learning + inversion for
combining data

e C(Collaboration: between disciplines

e Role of open science, educational resources

o simpeg ‘ GemPy G emqig ' subsurface

Fatiando DVGIMLI ) PYGMT
a Terra G Feophyataliiemin sty % yG Pym




who Is involved?

~ comment

Race and racism in the geosciences

Geoscientists in the United States are predominantly White. Progress towards diversification can only come with a
concerted shift in mindsets and a deeper understanding of the complexities of race.

D

comment |

No progress on diversity in 40 years

Ethnic and racial diversity are extramely fow among United States citizens and permanent residents who earned
doctorates in earth, atmospheric and ocean sciences, Worse, there has been little to no improvement over the past
four decades.

Rachel E. Bernard and Emily H. G. Cooperdock

The bigger picture

In 2016, only 6% of geoscience doctorates
awarded to US citizens and permanent
residents went to students from
underrepresented minorities, a group
who made up 31% of the US population
that year®

U.S. Geoscience Enroliments and Degrees
Collapse in 2019-2020

Geoscience Enroliments in the United States, 1955-2020

Undergrad$10%

1955 1959 1963 1967 1971 1975 1979

1983 1987 1991 1995 1999 2003 2007 2011 2015 2019



ways forward?

e rebranding “applied geophysics”
o connecting with values
o proactive on climate change solutions
o including emphasis on technology, computation

e role of societies
o maintain / promote brand of applied geophysics
o engage students
o BCGS, KEGS scholarships / internships

e amplifying positive initiatives

o ..7

Women Geoscientists

i in Canada

in GEOSCIENCE



thank you! BCGS

BC Geophysical Society

< lheagy@eoas.ubc.ca

O @lheagy
W @lindsey jh







Magnetics: proxy model

using: identical mesh, survey, inversion parameters, perform simulations and
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