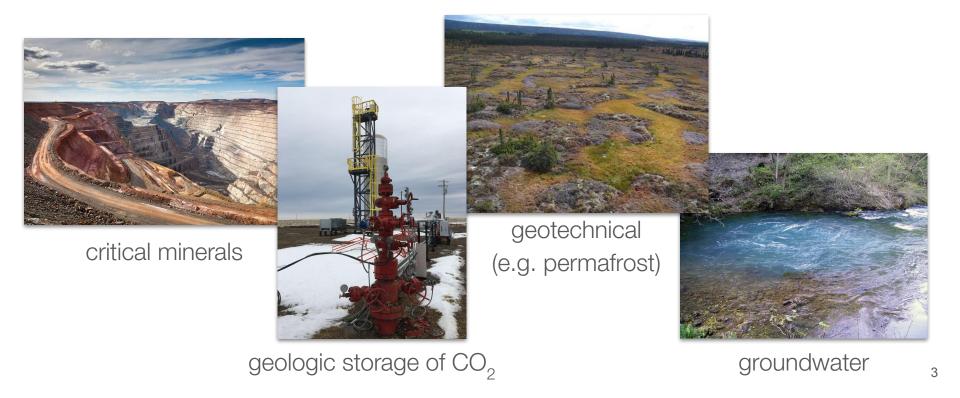
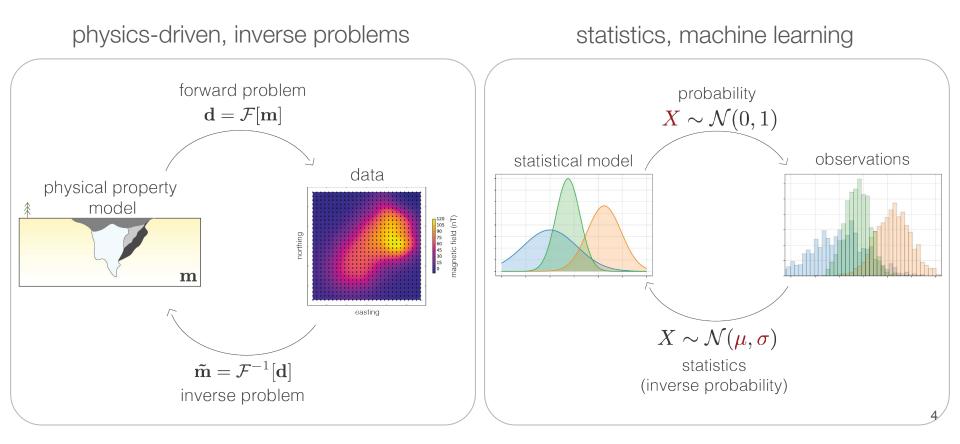
computational geophysics in a changing climate

Lindsey Heagy

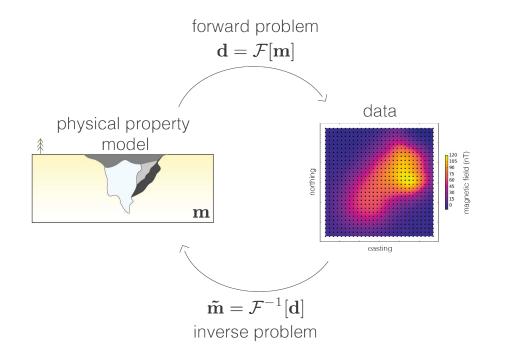
University of British Columbia - Geophysical Inversion Facility


University of Tasmania | April 2022

UBC Vancouver is located on the traditional, ancestral, and unceded territory of the x^wməθk^wəỷəm people

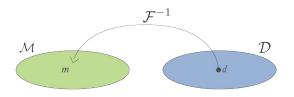


climate crisis


solutions & mitigating impacts: opportunities for geophysics

research interests: computational geoscience

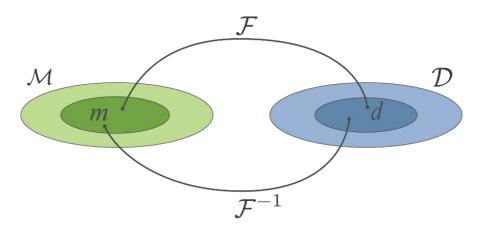

geophysical inversions


statement of the inverse problem


Given

- observations: d_j^{obs} , $j = 1, \dots, N$
- uncertainties: ϵ_i
- ability to forward model: $\mathcal{F}[m] = d$

Find the Earth model that gave rise to the data

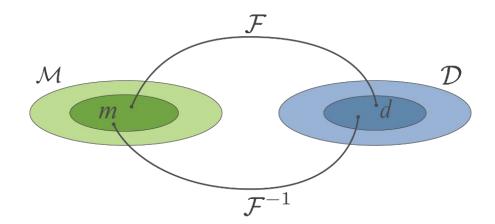


inverse problem

The inverse problem is ill-posed

- non-unique
- ill-conditioned

Any inversion approach must address these issues.


inverse problem

Prior information important to constrain the inversion

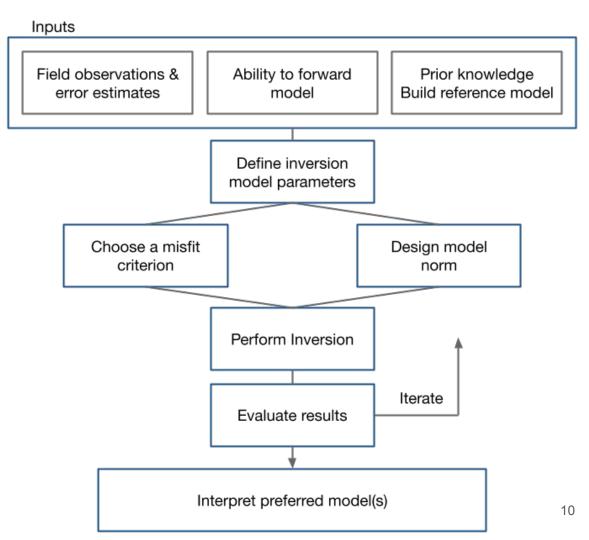
- geologic structures
- boreholes
- reference model
- bounds

. . .

- physical properties
- other geophysical data

need a framework for inverse problem

Tikhonov (deterministic) Bayesian (probabilistic) Find a single "best" solution by solving Use Bayes' theorem optimization $P(m|d^{obs}) \propto P(d^{obs}|m)P(m)$ minimize $\phi = \phi_d + \beta \phi_m$ $\begin{cases} P(m): \text{ prior information about } m \\ P(d^{obs}|m): \text{ probability about the data errors (likelihood)} \\ P(m|d^{obs}): \text{ posterior probability for the model} \end{cases}$ subject to $m_L < m < m_H$ $\begin{cases} \phi_d: \text{ data misfit} \\ \phi_m: \text{ regularization} \\ \beta: \text{ trade-off parameter} \\ m_L, m_H: \text{ lower and upper bounds} \end{cases}$ Two approaches: Characterize $P(m|d^{obs})$ (a)


Find a particular solution that maximizes $P(m|d^{obs})$ (b) MAP: (maximum a posteriori) estimate

flow chart for the inverse problem

- many components
- iterative process to obtain solution
- each component requires evaluation, adjustment by user

Fundamentals of Inversion – D. Oldenburg Capturing knowledge in code – L. Heagy http://www.mtnet.info/EMinars/EMinars.html

choosing a software package

depends on needs / goals:

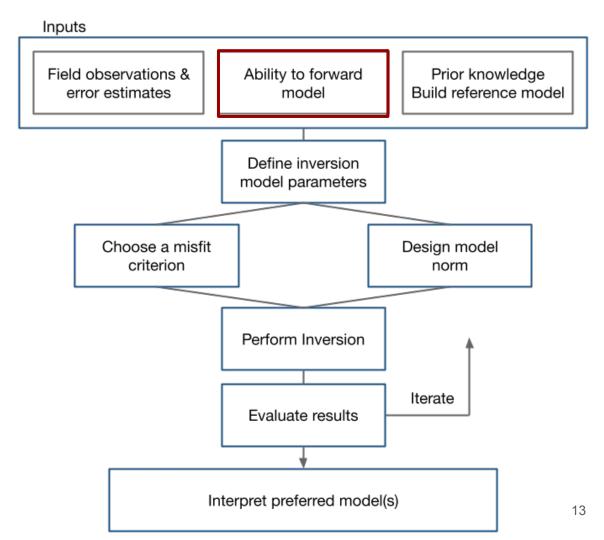
- production scale inversion
- methods oriented research
- education

influences priorities

- computational efficiency
- ease of use
- flexibility
- modularity
- license
- development style

a sampling of open tools in EM

simpeg



facilitate research in geophysics

prioritizes:

- **modularity:** building blocks, pieces available to manipulation
- **declarative code:** express intent, looks like the math
- **extensible:** integration of information
- open community: transparency, opportunities for collaboration

flow chart for the inverse problem

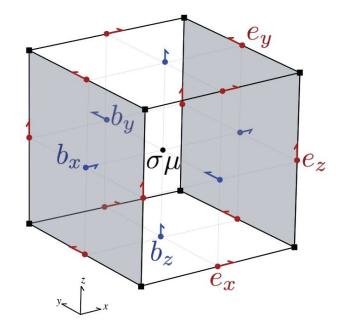
electromagnetics: basic equations (quasi-static)

	Time	Frequency
Faraday's Law	$ abla imes ec e = -rac{\partial ec b}{\partial t}$	$ abla imes ec E = -i\omega ec B rac{\partial ec b}{\partial t}$
Ampere's Law	$ig abla imes ec{h} = ec{j} + rac{\partial ec{d}}{\partial t}$	$ abla imes ec{H} = ec{J} + i\omegaec{D}rac{\partial}{\partial}$
No Magnetic Monopoles	$ abla \cdot ec b = 0$	$\nabla \cdot \vec{B} = 0$
Constitutive	$\vec{j} = \sigma \vec{e}$	$\vec{J} = \sigma \vec{E}$
Relationships (non-dispersive)	$ec{b}=\muec{h}$	$ec{B}=\muec{H}$
	$\vec{d} = arepsilon ec{e}$	$ec{D}=arepsilonec{E}$

* Solve with sources and boundary conditions

electromagnetics: frequency domain

Continuous equations


$$\nabla \times \vec{E} + i\omega \vec{B} = 0$$
$$\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{J}_s$$
$$\hat{n} \times \vec{B}|_{\partial \Omega} = 0$$

Finite volume discretization

$$\mathbf{C}\mathbf{e} + i\omega\mathbf{b} = 0$$

 $\mathbf{C}^{ op}\mathbf{M}^{f}_{\mu^{-1}}\mathbf{b} - \mathbf{M}^{e}_{\sigma}\mathbf{e} = \mathbf{M}^{e}\mathbf{j}_{s}$

Eliminate **b** to obtain a second-order system in **e**

$$\underbrace{(\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C} + i\omega\mathbf{M}_{\sigma}^{e})}_{\mathbf{A}(\sigma,\omega)}\underbrace{\mathbf{e}}_{\mathbf{u}} = \underbrace{-i\omega\mathbf{M}^{e}\mathbf{j}_{s}}_{\mathbf{q}(\omega)}$$

(Haber, 2014; Cockett et al, 2016) 15

solving a FDEM problem

> $\omega = 2 * pi * frequency$ -200C = mesh.edge_curl -400 Mfµi = mesh.get_face_inner_product(1/mu_0) Meo = mesh.get_edge_inner_product(sigma) -600-600 -400 -200 200 0 $(\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C}+i\omega\mathbf{M}_{\sigma}^{e})\underbrace{\mathbf{e}}$ $A = C.T * Mf\mu i * C + i * \omega * Me\sigma$ х Ainv = Solver(A) # acts like A inverse X=25m 11 $\mathbf{A}(\sigma,\omega)$ 0 Me = mesh.get_edge_inner_product() -200 $=-i\omega \mathbf{M}^{e}\mathbf{j}_{\mathbf{s}}$ $q = -i * \omega * Me * js$ -400 $\mathbf{q}(\omega)$ u = Ainv * q-600

> -600 -400 -200 0 200 400 600 y

Current density at Z=-75m

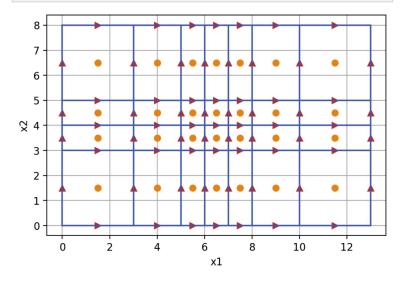
600

400

Time: 0.01 ms

600

400


200

 10^{-12} 10^{-11} 10^{-10} 10^{-9} Current density (A/m²)

create a mesh: the discretize package

import discretize

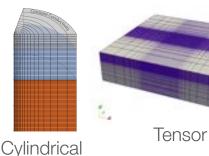
hx = [3, 2, 1, 1, 1, 2, 3] hy = [3, 1, 1, 3] mesh = discretize.TensorMesh([hx, hy]) mesh.plot_grid(edges=True, centers=True);

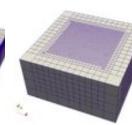
Properties or Methods

dim, origin

n_cells, n_nodes, n_faces, n_edges

cell_volumes, face_areas, edge_lengths


cell_centers, nodes, edges, faces


nodal_gradient, face_divergence, edge_curl

average_edge_to_cell, average_node_to_cell, ...

get_edge_inner_product()

get_interpolation_matrix(location)

OcTree

J. Capriotti

an example: monitoring with steel-cased wells

-1000

 10^{-6}

current density (A/m²)

-500

0 х

10-5

- steel: highly conductive, also substantial magnetic permeability
- challenging geometry for numerical simulations

model

casing:

5e+06 S/m

target

500

1000

-1000

-500

0

-250 -

-500

-750

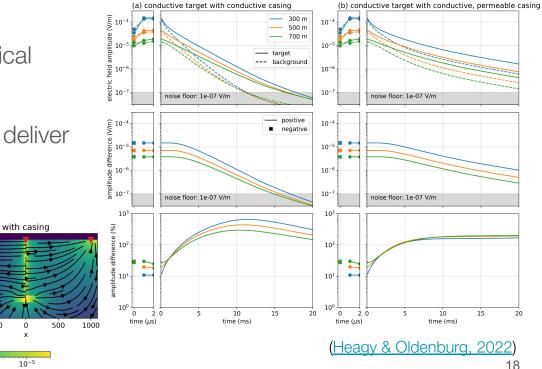
-1000

-1000

background:

-500

100 Ωm


but... advantageous for helping deliver current to depth

no casing

500

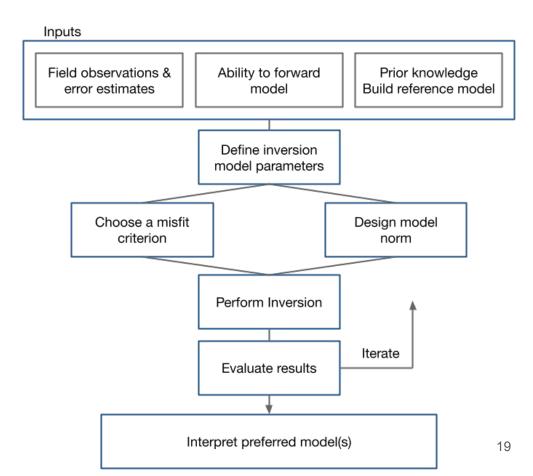
 10^{-7}

1000

flow chart for the inverse problem

What do we need for inversion?

minimize $\phi = \phi_d + \beta \phi_m$


subject to $m_L < m < m_H$

From the simulation

- adjoint sensitivity times a vector
- sensitivity times a vector

Inversion components:

- define a model norm
- perform optimization

sensitivities

For inverse problem, also need sensitivities (and adjoint)

$$\mathbf{J} = \frac{\partial \mathbf{d}^{\text{pred}}}{\partial \mathbf{m}}$$
$$= \frac{\partial \mathbf{P}(\mathbf{u}, \omega)}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{m}}$$

where the derivative of the fields (u) is computed implicitly (requires a solve)

$$\frac{\partial \mathbf{A}(\sigma,\omega)\mathbf{u}^{\text{fixed}}}{\partial \mathbf{m}} + \mathbf{A}(\sigma,\omega)\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = 0$$

J is a large, dense matrix \rightarrow compute products with a vector if memory-limited

inversion as an optimization problem

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$

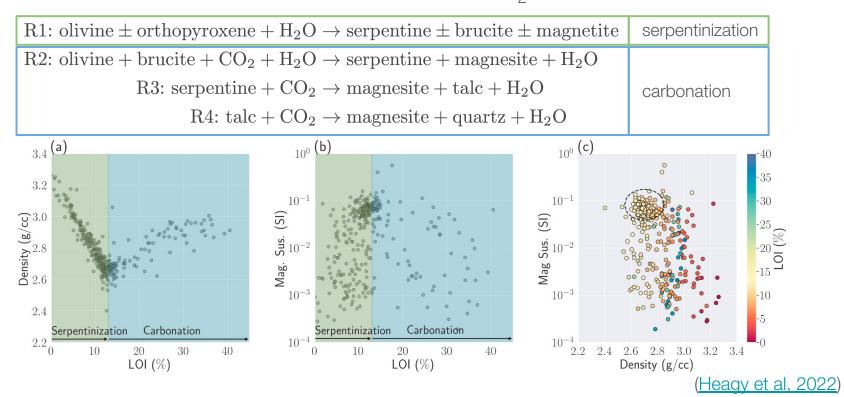
s.t. $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$

data misfit

$$\phi_d = \|\mathbf{W}_d(\mathcal{F}(\mathbf{m}) - \mathbf{d}^{\mathrm{obs}})\|^2$$

uncertainties captured in ${\boldsymbol W}$

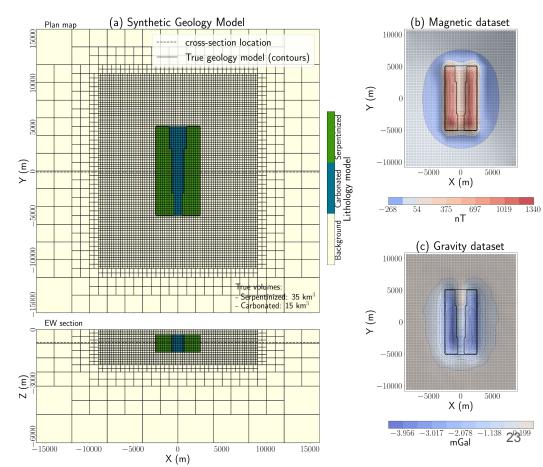
$$\mathbf{W}_d = \operatorname{diag}\left(rac{1}{\epsilon}
ight)$$

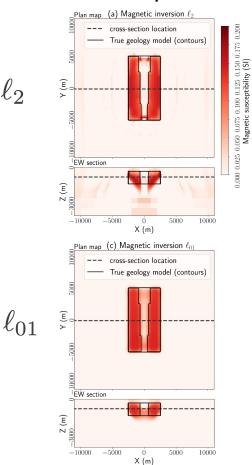

 $\epsilon_j = \% |d_j^{\text{obs}}| + \text{floor}$

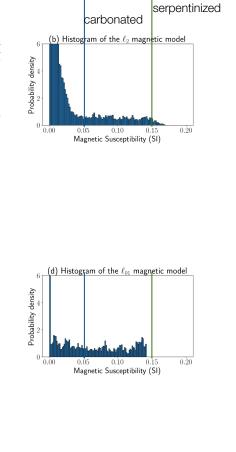
model norm

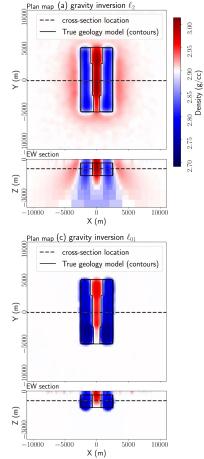
$$\phi_m = \alpha_s \int_V w_s (m - m_{\text{ref}})^2 dV + \alpha_x \int_V w_x \frac{d(m - m_{\text{ref}})^2}{dx} dV$$
smallness smoothness
discretize

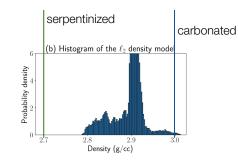
$$\phi_m = \alpha_s \|\mathbf{W}_s(\mathbf{m} - \mathbf{m}_{\text{ref}})\|^2 + \alpha_x \|\mathbf{W}_x(\mathbf{m} - \mathbf{m}_{\text{ref}})\|^2$$

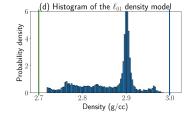

• ultramafic rocks rich in Ca, Mg can react with CO₂ to form carbonated minerals




- motivated by Decar in BC
- serpentinized region with central carbonated region
- physical properties


	mag susc (SI)	density (g/cc)	dens. contrast (g/cc)
background	0	2.9	0.0
serpentinized	d 0.15 2		-0.2
carbonated	0.05	3.0	0.1

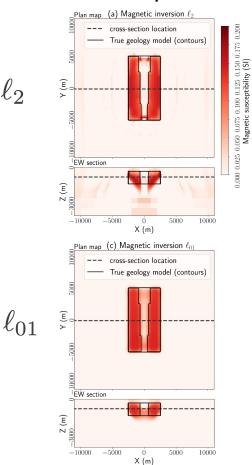

 goals: delineate, estimate volumes

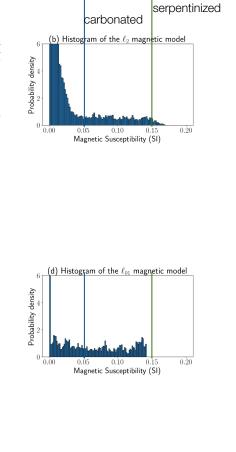


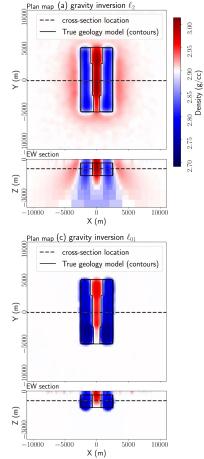
inverse problem

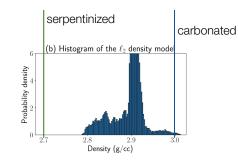
Given data, estimate a physical property model

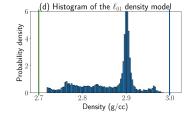
Pose as an optimization

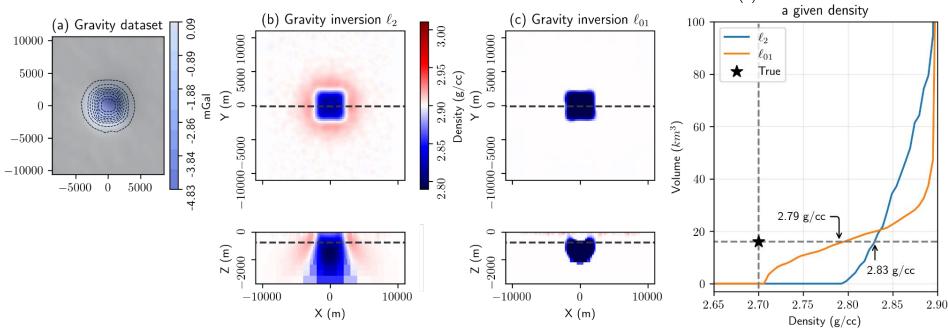

$$\underset{m}{\text{minimize }} \phi(m) = \phi_d(m) + \beta \phi_m(m)$$


Model norm captures assumptions


$$\phi_m(m) = \alpha_s \int |m - m_{\text{ref}}|^p dV + \alpha_x \int \left|\frac{dm}{dx}\right|^q dV + \alpha_y \int \left|\frac{dm}{dy}\right|^q dV + \alpha_z \int \left|\frac{dm}{dz}\right|^q dV$$

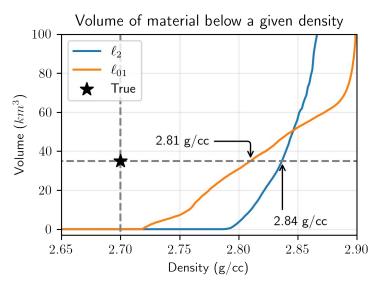

• ℓ_2 : p, q = 2: promotes smooth structures • ℓ_{01} : p, q < 2: promotes sparse, compact structures

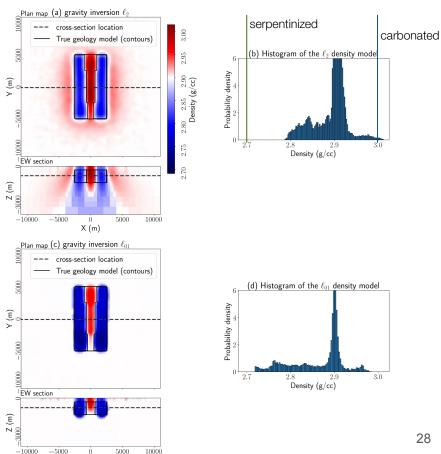




how do we choose a threshold?

using: identical mesh, survey, inversion parameters, perform simulations and inversions with a representative block.




(d) Volume of material below

how do we choose a threshold?

Threshold from proxy: 2.83, 2.79 g/cc

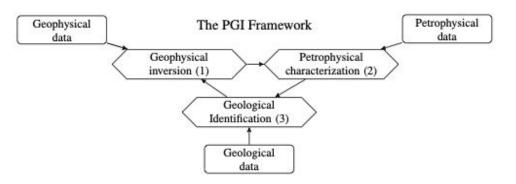
- ℓ_2 : 27 km³ ℓ_{01} : 27 km³

X (m)

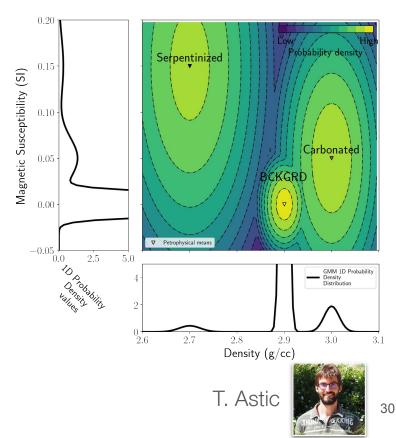
how do we choose a threshold?

• proxy model \rightarrow tool for estimating an appropriate physical property threshold

Inversion	Threshold for	Threshold from	Volume estimate with
	correct volume	proxy	proxy threshold
ℓ_2 magnetics	0.08 SI	0.07 SI	40 km^3
ℓ_{01} magnetics	0.08 SI	0.07 SI	43 km^3
ℓ_2 gravity	2.84 g/cc	2.83 g/cc	$27 \ \mathrm{km}^3$
ℓ_{01} gravity	$2.81 \mathrm{~g/cc}$	$2.79 \mathrm{~g/cc}$	$27 \ \mathrm{km^3}$


- Also of interest:
 - delineating the top \rightarrow ex-situ vs. in-situ
 - \circ joint inversion \rightarrow consistent model?

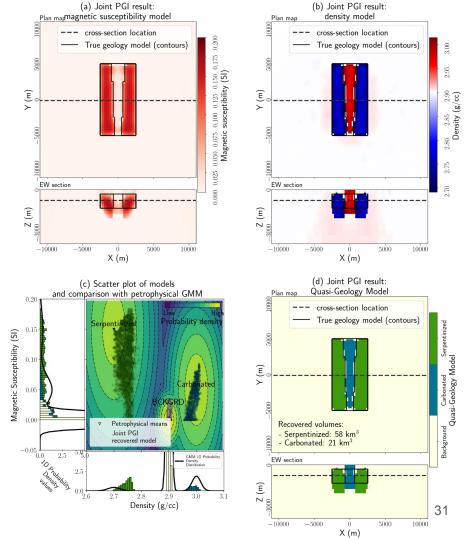
Petrophysically and Geologically Guided Inversion


Alternative approach to the inverse problem

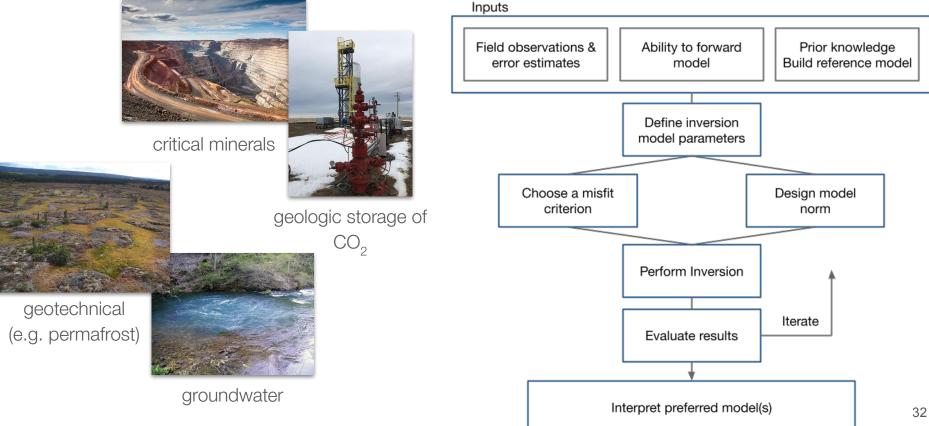
- brings in petrophysical information (GMM)
- builds a quasi-geology model

- important components in the inversion
 - multiple data misfits
 - including petrophysical information

Gaussian mixture model (GMM)

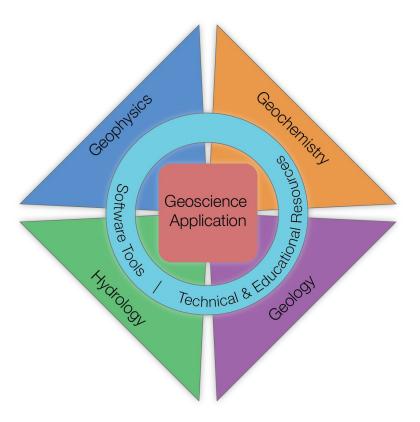


Joint PGI


 Inversion fits both geophysical data sets and petrophysical data

ϕ _data = ϕ _grav + ϕ _mag # one earth?

- Weighting strategies to balance contributions (Astic et al, 2021)
- One quasi geology model consistent with both data sets
- Good estimate to top of serpentinized rock volume



geophysics and multidisciplinary problems

geophysics and multidisciplinary problems

- geophysics one piece
- need for
 - Technical advances: machine learning
 + inversion for combining data
 - Collaboration: between disciplines
- role of open science, educational resources

Improving Water Security in Mon state, Myanmar via Geophysical Capacity Building

- Bring geophysical equipment to Mon state Myanmar
- Train local stakeholders
- Provide open-source software & educational resources

Devin

Cowan

Lindsev

Heady

Michael

Maxwell

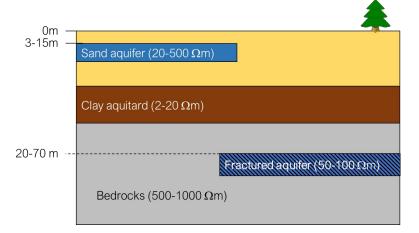
Doug

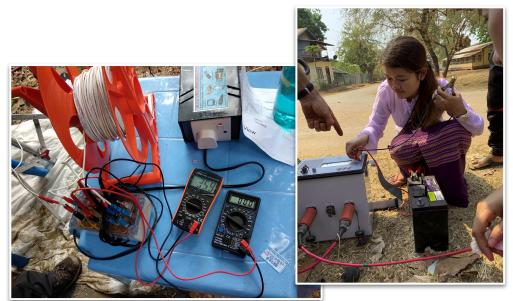
Oldenburg

Fan

Kang

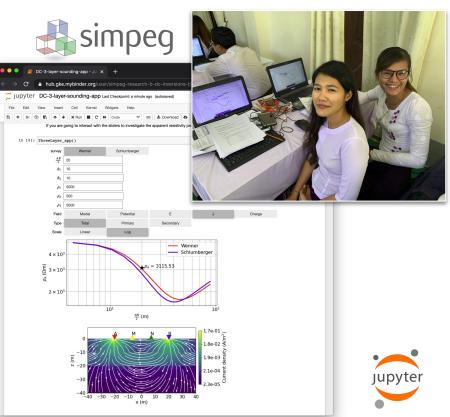
Capriotti





Capabilities needed by local stakeholders:

- Understand the hydrogeologic problem and relationship to electrical resistivity
- Design field surveys
- Collect and process data
- Interpret those data


Project stages

- Course instruction: fundamentals of DC resistivity & inversion
- Field surveying and processing
- Post-project sustainability

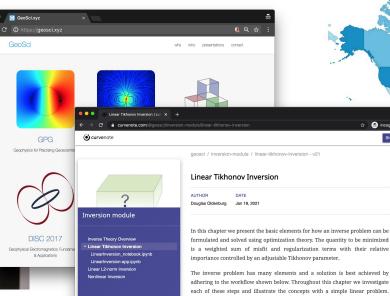
Project resources

- Website for slides, videos and data
- Jupyter notebooks for teaching, working with data
- SimPEG software for processing
- Case History documents for collaboration and reproducibility
- Social media for collaboration

5 wells (>1000 gph)

Benefits of using & developing open source resources

- No licensing or time-out concerns on software
- Easily design fit-for-purpose interactive tools for learning
- Readily update software, documentation based on user needs
- Encourage collaborative, reproducible practices

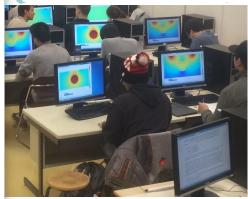

open educational resources

Users Sessions 30K 48K t 28% t 30% vs last year

https://geosci.xyz

electromagnetics course: 26 locations worldwide

Jupyter notebooks are provided so that the concepts can be explored and all


figures can be reproduced. The formative material for this chapter is extracted from the tutorial paper by Oldenburg and Li (Oldenburg & Li, 2005).

🔄 🌧 Incognito

SIGN UP

6.088

undergrad at UBC

opportunities for open science

- accelerate science: collaboration & leveraging expertise, experience of others
- broader impact: enable others to build upon your work

Geochemistry

te soon vy te conservation of the soon of

Geoscience

Geophaics

Software

Hydrology

Tools

thank you!

Tobias Stål

UNIVERSITY of **TASMANIA**

Contact

heagy@eoas.ubc.ca

dccowan

ikding

leonfoks

sdevriese

