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Time-domain EM response of a UXO
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Time-domain EM response of a UXO
UXO

not UXO

timetraditional approach: use inversion to get these and then
classify by comparing L(t) with ordnance library
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Survey and system
UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above seabed: ~1 m
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Can we classify directly from EM data?

Convolutional neural networks (CNNs)
● Convolutional filters look at spatial / temporal 

features in the data 

Training EM data for UXO classification: 
● Available library of ordnance objects with 

polarizations
● Fast geophysical simulations
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https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Convolutional Neural Networks (CNNs)

Neural network

Supervised classification problem
provided data with labels, construct a function (network) that outputs

labels given input data
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Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem?
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Defining label masks

Magnitude for each transmitter
Sum of 
magnitudes

Label mask 
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Single acquisition line with three objects (classification 
results)
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Training dataset: dipole forward model

7 classes:
● background
● 155 mm
● 105 mm
● 81 mm
● 60 mm
● 40 mm
● clutter

# of realizations:
● Training (multi-class): 400,000
● Validation: 10,000

Randomly assign:
● Target class
● Location
● Orientation
● Noise level: approximate from 

background areas in the field data

3 m 

2.5 x W 
0.5 m

19W - width of the system

1.5 x W



Clutter design

20

Physics-based parameterization of EM 
decay:

9 parameters in total:

1. Estimate values for UXOs in 
ordnance library

2. Define a distance threshold
3. Fill the remaining space with clutter 

objects



Field data - Sequim Bay test site (2022)

● 7 acquisition lines

● Current workflow requires seawater response removed

● Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)
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Get correlated noise using a binary classifier

22
get spatially correlated noise from this subset of field data 

object



Classification map (output of CNN)
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Predicted labels vs truth labels - field data

predicted label

ground truth
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Predicted labels vs truth labels - field data
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● Discriminated clutter



Predicted labels vs truth labels - field data
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● Discriminated clutter
● Did not miss any UXO



Predicted labels vs truth labels - field data

predicted label

ground truth
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● Discriminated clutter
● Did not miss any UXO
● Classified to closest object in training dataset 



Concluding remarks:

● Key points:
○ image-segmentation architecture
○ clutter design and correlated noise are important

● Some limitations:
○ not trained to handle multiple objects in the same window
○ objects used to generate synthetic data should be close to the objects on the field

● Future work: 
○ explore multi-target scenario (maybe instance segmentation)
○ combining with traditional approach

28



Concluding remarks:

29

Jorge Lopez-Alvis       lopez.alvis@gmail.comThank you!

● Key points:
○ image-segmentation architecture
○ clutter design and correlated noise are important

● Some limitations:
○ not trained to handle multiple objects in the same window
○ objects used to generate synthetic data should be close to the objects on the field

● Future work: 
○ explore multi-target scenario (maybe instance segmentation)
○ combining with traditional approach


	Slide 1
	Slide 2: Time-domain EM response of a UXO
	Slide 3: Time-domain EM response of a UXO
	Slide 4: Time-domain EM response of a UXO
	Slide 5: Survey and system
	Slide 6: Data
	Slide 7: Data
	Slide 8: Data
	Slide 9: Data
	Slide 10: Can we classify directly from EM data?
	Slide 11: Convolutional Neural Networks (CNNs)
	Slide 12: Convolutional Neural Networks (CNNs)
	Slide 13: Defining label masks
	Slide 14: Application to a line of data
	Slide 15: Application to a line of data
	Slide 16: Application to a line of data
	Slide 17: Application to a line of data
	Slide 18: Application to a line of data
	Slide 19: Training dataset: dipole forward model
	Slide 20: Clutter design
	Slide 21: Field data - Sequim Bay test site (2022)
	Slide 22: Get correlated noise using a binary classifier
	Slide 23: Classification map (output of CNN)
	Slide 24: Predicted labels vs truth labels - field data
	Slide 25: Predicted labels vs truth labels - field data
	Slide 26: Predicted labels vs truth labels - field data
	Slide 27: Predicted labels vs truth labels - field data
	Slide 28: Concluding remarks:
	Slide 29: Concluding remarks:

