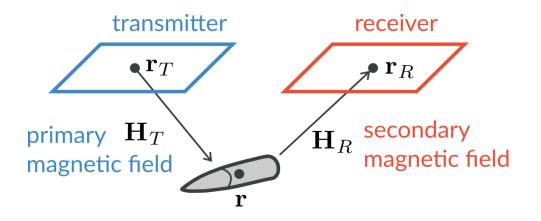
Using convolutional neural networks to classify UXO with multi-component electromagnetic induction data

Jorge Lopez-Alvis¹, Lindsey J. Heagy¹, Douglas W. Oldenburg¹, Stephen Billings², Lin-Ping Song²

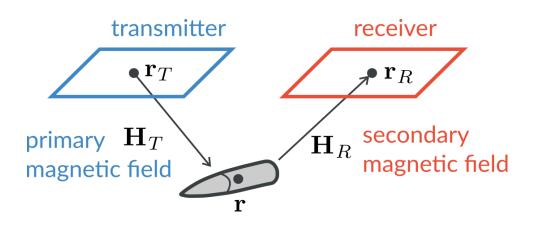
¹University of British Columbia, ²Black Tusk Geophysics, Inc.

This work is supported by DoD SERDP project MR22-3487

Time-domain EM response of a UXO

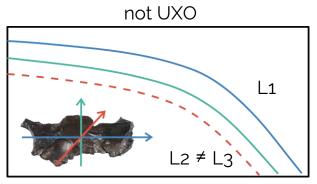


Time-domain EM response of a UXO



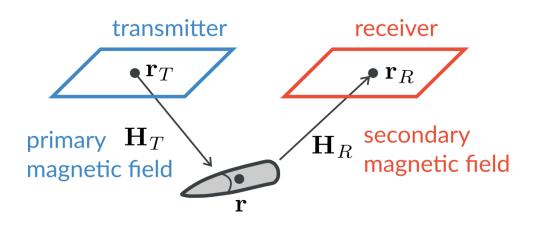
$$d(\mathbf{r}_R, t) = \mathbf{H}_R(\mathbf{r}, \mathbf{r}_R) \cdot \mathbf{P}(t) \cdot \mathbf{H}_T(\mathbf{r}, \mathbf{r}_T) \mathbf{P}(t) = \mathbf{A}(\phi, \theta, \psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^\top(\phi, \theta, \psi) \qquad \mathbf{L}(t) = \begin{pmatrix} L_1 & & \\ & L_2 & \\ & & L_3 \end{pmatrix}$$

UXO L2 = L3



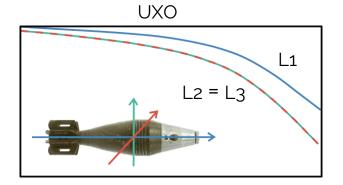
time

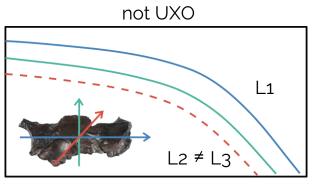
Time-domain EM response of a UXO



$$d(\mathbf{r}_{R},t) = \mathbf{H}_{R}(\mathbf{r},\mathbf{r}_{R}) \cdot \mathbf{P}(t) \cdot \mathbf{H}_{T}(\mathbf{r},\mathbf{r}_{T})$$
$$\mathbf{P}(t) = \mathbf{A}(\phi,\theta,\psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^{\top}(\phi,\theta,\psi)$$
$$\mathbf{L}(t) = \begin{pmatrix} L_{1} & L_{2} \\ & L_{3} \end{pmatrix}$$

traditional approach: use inversion to get these and then classify by comparing **L**(t) with ordnance library

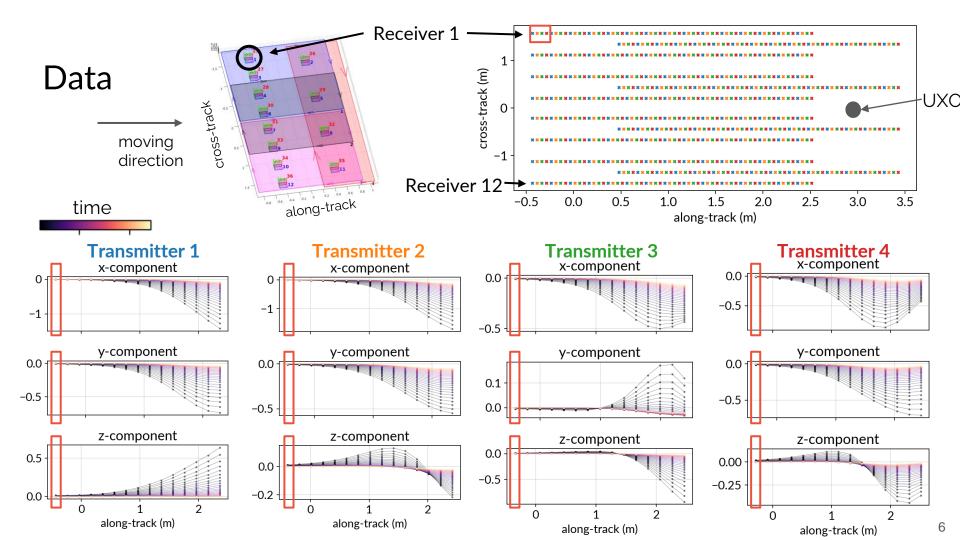


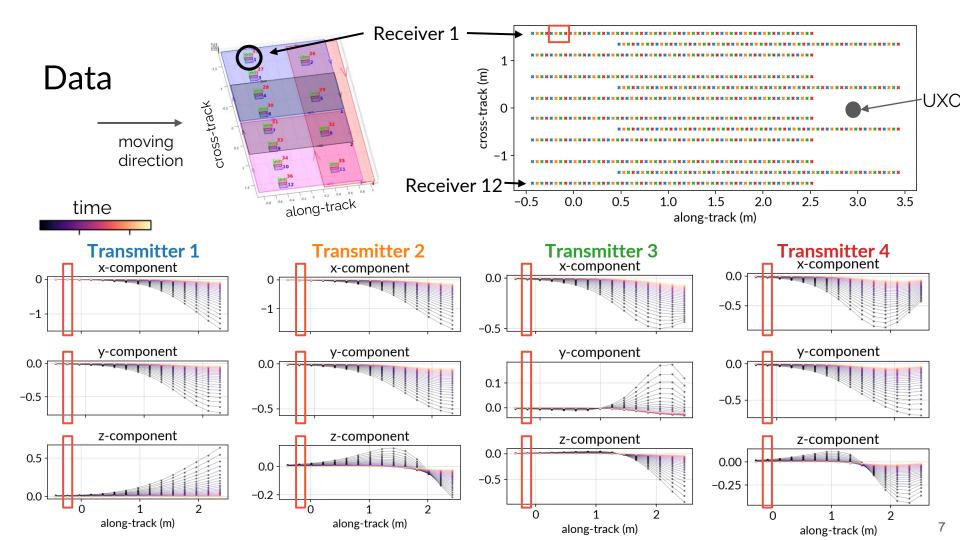


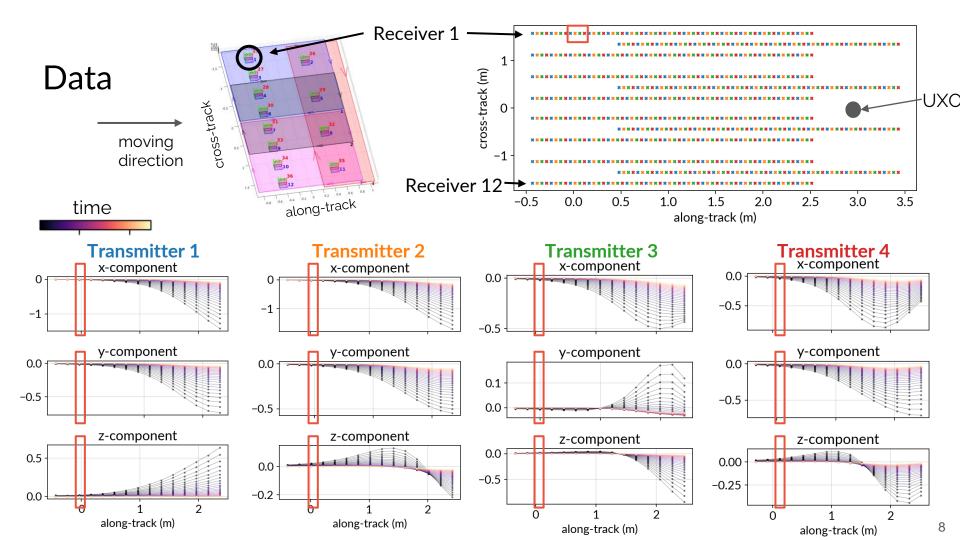
Survey and system

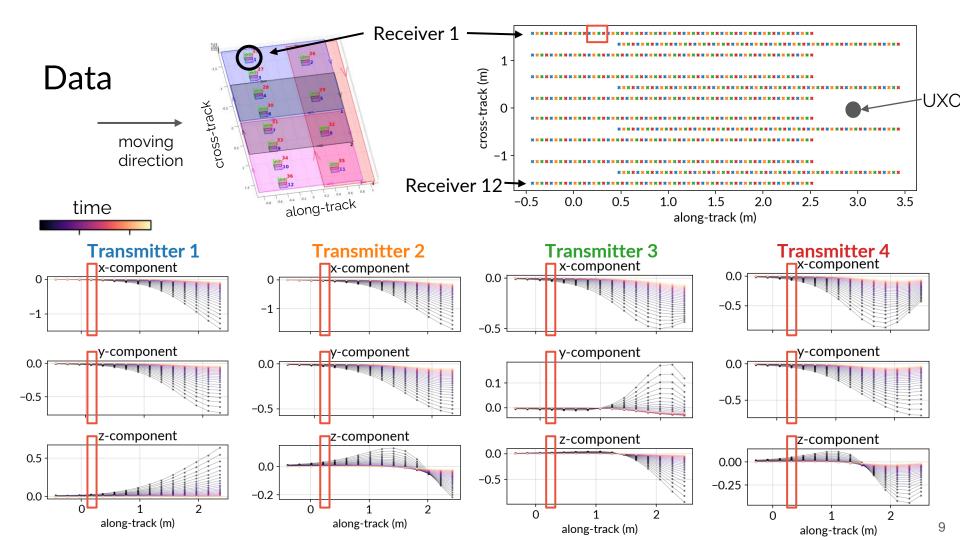
UltraTEMA-4 system:

- 4 transmitters
- 12 receivers (3-component)
- 27 time channels
- Height above seabed: ~1 m









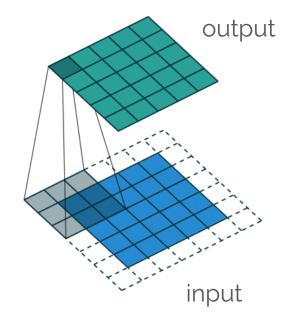
Can we classify directly from EM data?

Convolutional neural networks (CNNs)

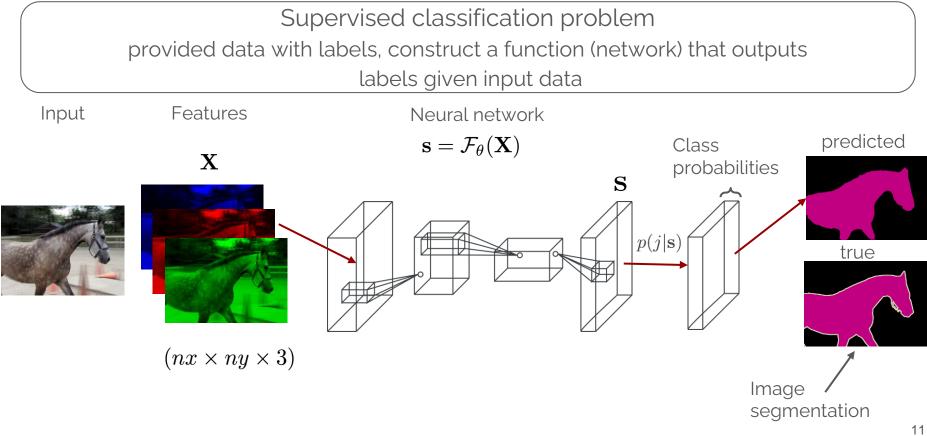
• Convolutional filters look at spatial / temporal features in the data

Training EM data for UXO classification:

- Available library of ordnance objects with polarizations
- Fast geophysical simulations

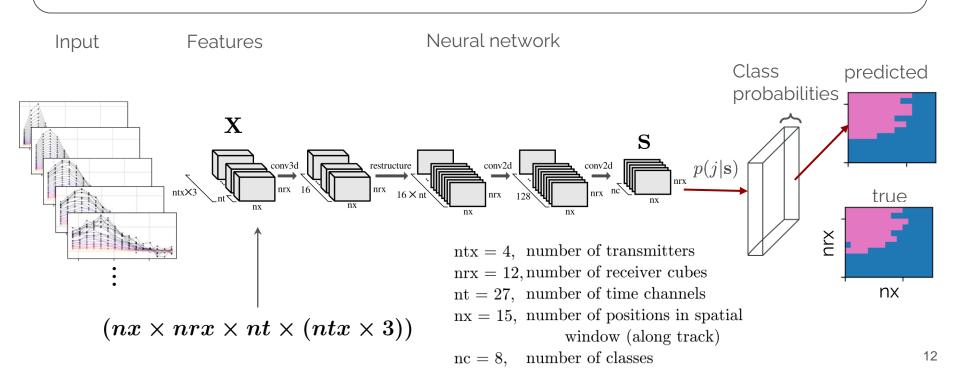


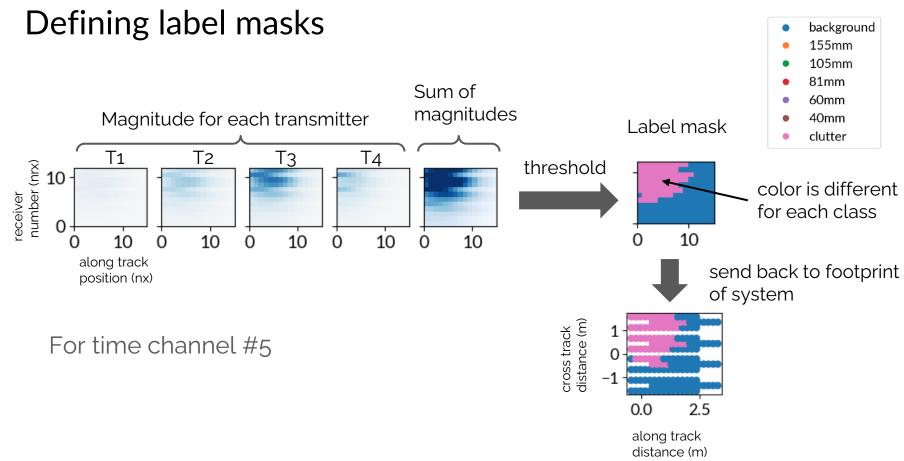
Convolutional Neural Networks (CNNs)



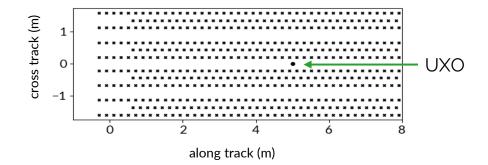
Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem?

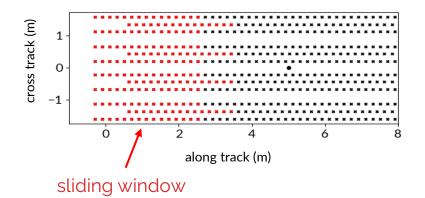




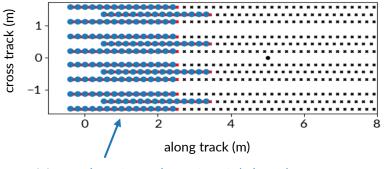
Input features are created by using a sliding window:



Input features are created by using a sliding window:

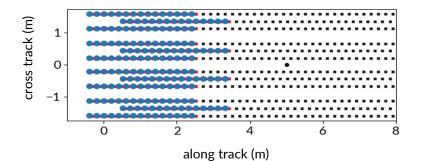


Input features are created by using a sliding window:

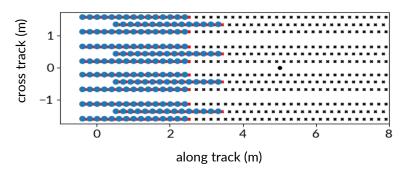


Neural network output (class)

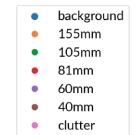
Input features are created by using a sliding window:

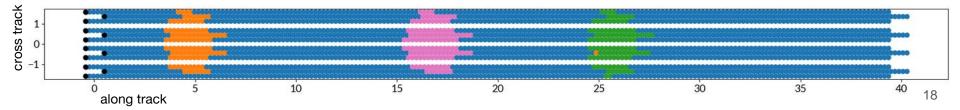


Input features are created by using a sliding window:



Single acquisition line with three objects (classification results)





Training dataset: dipole forward model

7 classes:

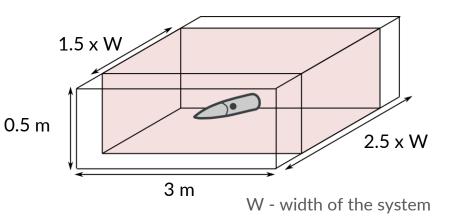
- background
- 155 mm
- 105 mm
- 81 mm
- 60 mm
- 40 mm
- clutter

of realizations:

- Training (multi-class): 400,000
- Validation: 10,000

Randomly assign:

- Target class
- Location (x, y, z)
- Orientation (ϕ, θ, ψ)
- Noise level: approximate from background areas in the field data



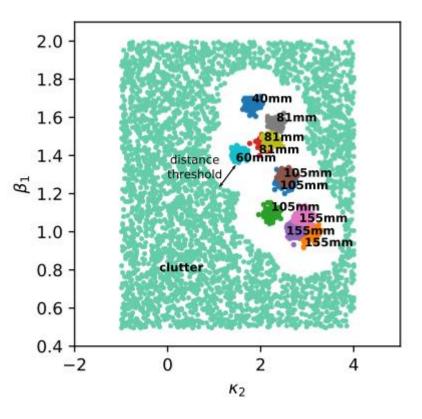
Clutter design

Physics-based parameterization of EM decay:

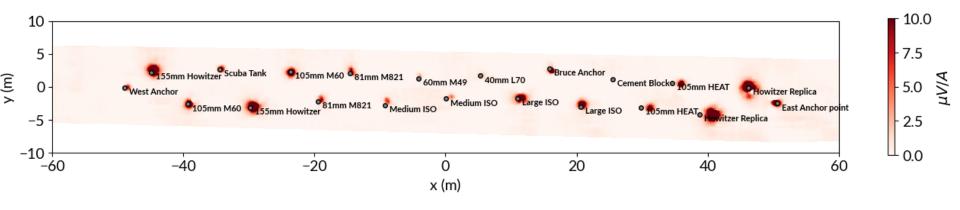
$$L(t) = kt^{-\beta}exp(-t/\gamma)$$

9 parameters in total:

- 1. Estimate values for UXOs in ordnance library
- 2. Define a distance threshold
- 3. Fill the remaining space with clutter objects

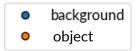


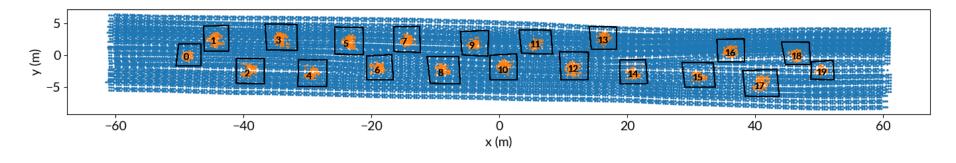
Field data - Sequim Bay test site (2022)

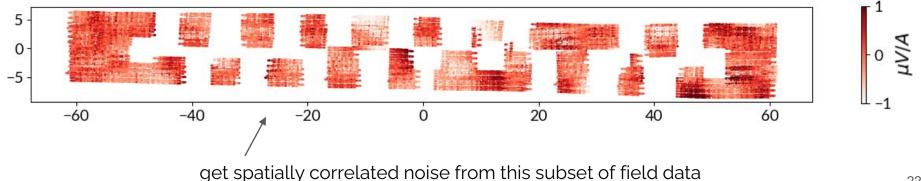


- 7 acquisition lines
- Current workflow requires seawater response removed
- Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)

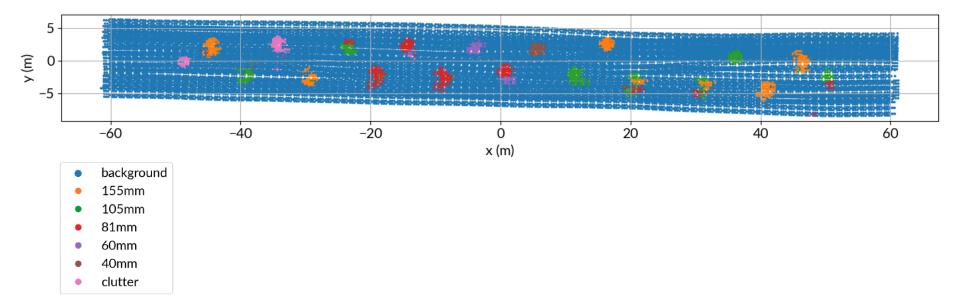
Get correlated noise using a binary classifier

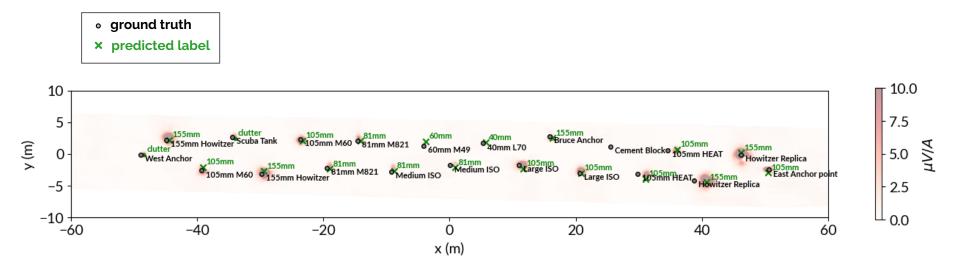


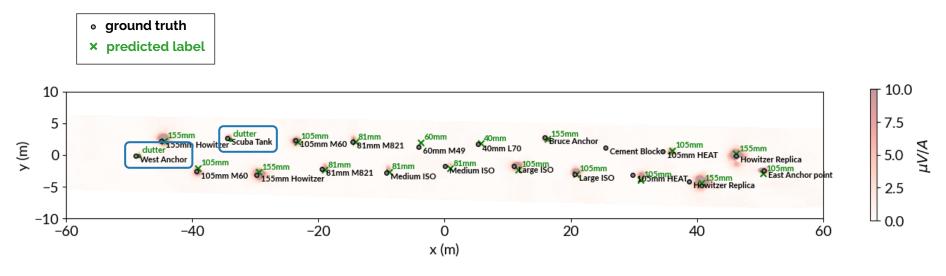




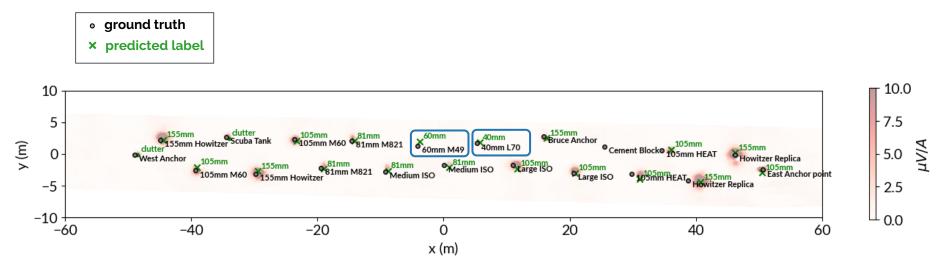
Classification map (output of CNN)



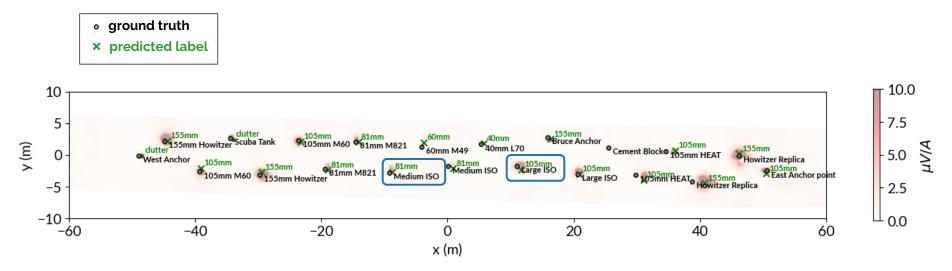




• Discriminated clutter



- Discriminated clutter
- Did not miss any UXO



- Discriminated clutter
- Did not miss any UXO
- Classified to closest object in training dataset

Concluding remarks:

- Key points:
 - image-segmentation architecture
 - clutter design and correlated noise are important
- Some limitations:
 - not trained to handle multiple objects in the same window
 - objects used to generate synthetic data should be close to the objects on the field
- Future work:
 - explore multi-target scenario (maybe instance segmentation)
 - combining with traditional approach

Concluding remarks:

- Key points:
 - image-segmentation architecture
 - clutter design and correlated noise are important
- Some limitations:
 - not trained to handle multiple objects in the same window
 - o objects used to generate synthetic data should be close to the objects on the field
- Future work:
 - explore multi-target scenario (maybe instance segmentation)
 - o combining with traditional approach

