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some important problems

have in common: electrical conductivity can be a diagnostic physical property
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electrical conductivity / resistivity

A measure of how easily current 
passes through a material
● σ: conductivity [S/m]
● ρ: resistivity [Ωm]
● ρ = 1/σ

Depends on many factors
● Mineralogy
● Porosity 
● Permeability 
● Nature of pore fluid 
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geophysical experiments & physical properties 
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electromagnetic experiments 

Sources: 
● grounded or inductive 
● controlled or natural 

Waveform
● harmonic                                      

(FDEM)
● transient                                            

(TDEM) 

Survey location
● airborne
● ground 
● boreholes

5



physics: time-domain 
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air: 10-8 S/m

background: 10-2 S/m

layer



physics: time-domain 
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current density db/dt

https://docs.google.com/file/d/1rWlQ4tDvCpIMm6Fc8l4ylZ_7JLOhmhfd/preview


physics: time-domain 
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current density db/dt

https://docs.google.com/file/d/1bpdii3xCNIX_nMNE7VOJXX7XV5PWKF3k/preview


physics: frequency domain

high frequency ~ early times, 
low frequency ~ later times
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Jy imag

B imag

100 kHz 10 kHz

skin depth



statement of the inverse problem

Given 
● observations: 
● uncertainties: 
● ability to forward model:

Find the Earth model that gave rise to the data
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statement of the inverse problem

Given 
● observations: 
● uncertainties: 
● ability to forward model:

Inverse problem: Find an Earth model that 
fits those data and a-priori information
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Simulation and parameter estimation in geophysics

common framework for simulations & inversions

accelerate research: build upon others work 

facilitate reproducibility of results

build & deploy in python

open-source
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Multi-scale EM geophysical methods

13

Controlled-source EM Natural source EM

Depth from the surface

meters Tens of 
meters

Hundreds 
of meters

Kilometers

Inductive Grounded

Tens of 
kilometers

Hundreds of 
kilometers



Multi-scale EM geophysical methods

14

Controlled-source EM Natural source EM

Depth from the surface

meters Tens of 
meters

Hundreds 
of meters

Kilometers

Inductive Grounded

Magnetotellurics (MT)Z-axis Tipper EM (ZTEM)

Tens of 
kilometers

Hundreds of 
kilometers

Airborne EM (AEM)Ground-based EM

ERT Towed-TEM



important problems: scales and surveys
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CO2 sequestration, hydrocarbons: fine scales & large contrasts
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steel casings: highly conductive, magnetic

grounded sources: helpful for exciting & 
detecting deep targets



minerals, geothermal: large scales & seeing deep
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natural source: rely on lightning strikes, solar wind as our source (unknown strength)

lightning aurora

skin depth (m) 



unexploded ordnance: small scales 

near surface (or seafloor), need to detect & classify UXO vs clutter
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?
UXO

Mortar

76 mm popcan

Not UXO



case studies
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case studies
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Improving Water Security in Mon state, 
Myanmar via Geophysical Capacity Building

● Bring geophysical equipment to Mon 
state Myanmar 

● Train local stakeholders 

● Provide open-source software & 
educational resources 

21

groundwater in Myanmar



groundwater in Myanmar: important components

7 step framework for case studies
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Open source software and 
resources 
● Jupyter notebook “apps” for 

concepts and data processing
22https://courses.geosci.xyz/gwb2020 

https://courses.geosci.xyz/gwb2020


groundwater in Myanmar

Phayar Ngoteto Village
In 2018: 1D inversion suggested aquifer at 30-50 m

● Well drilled to ~60 m: no significant water
In 2020 (before covid...):

●  return and conduct a 2D survey  
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7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis
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Main diagnostic: 
Water bearing region ~ 40-140 Ωm

groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Hydrogeological Unit Resistivity (Ωm)

Alluvium and laterite (dry) 200-800

Alluvium and laterite (saturated) 30

Sand aquifer 50-100

Clay aquitard 10-20

Bedrock (eg. granite) 500-1000

Fractured/Weathered bedrock (with fresh water) 40-400



Survey: 2D DC resistivity 

25

groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Wenner-Schlumberger Dipole-Dipole

data plotted in pseudosections



Survey: 2D DC resistivity 
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groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Wenner-Schlumberger Dipole-Dipole



Inversion: estimate a model of the subsurface
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groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis



groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

2020 Drill Hole



groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

2020 Drill Hole

>1000 gph
Field surveys at 23+ villages by engineers, 
geoscientists in Myanmar

Acquired data, interpreted, spotted drill 
holes using open source software



case studies
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Tli Kwi Cho (TKC) Kimberlite complex 

Geophysical discovery in 90’s: airborne 
magnetic and electromagnetic data 

2 kimberlite pipes 

Lake at DO-27
Peregrine Diamonds 

(pdiam.com) 31



physical properties at TKC

● Overall kimberlite: low density 
● HK: high susceptibility 
● VK and PK: 

○ low-moderate susceptibility
○ moderate-high conductivity 
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TKC: surveys 

Airborne data

System Year Data

DIGHEM 1992 FEM, mag

Falcon 2001 Grav grad

AeroTEM II 2003 TEM, mag

VTEM 2004 TEM, mag

DIGHEM AeroTEM VTEM

Ground data as well: NanoTEM, 
magnetics, gravity 
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TKC: data

Airborne data
● invert to obtain physical 

property models

● interpret to build 
quasi-geology model 

● published in 3 papers by the 
GIF group
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gravity gradiometry 

Devriese et al. 2017, 
Fournier et al. 2017, 
Kang et al. 2017

VTEM mag

VTEMfrequency domain EM

https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0142_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0140_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0141_1(1).pdf


TKC: electromagnetics

Focus on DIGHEM and VTEM data  

Negatives in VTEM data is challenge…  

AeroTEMII
(2003)

VTEM
(2004)

NanoTEM
(1993)

DIGHEM
(1992)
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IP effects in time domain EM data 

Negative transients in VTEM presents a challenge → motivates research

EM-decoupling: IP = Observation – Fundamental (EM)

Observed Fundamental (EM) IP
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Seogi 
Kang



TKC: IP inversion (early time)

Recovered 3D model

invert

Kang et al. (2016)

IP data

Observation Fundamental

IP = Observation – Fundamental (EM)

conductivity 
anomaly
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TKC: IP inversion (late time)

Kang et al. (2016)

Recovered 3D model

invert

IP data

Observation Fundamental

IP = Observation – Fundamental (EM)

 
conductivity 

anomaly
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A quasi-geology model from physical 
properties
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from geophysics

from drilling

● Independently inverted multiple airborne geophysical 
data sets in 3D, built a representative 3D rock model

● Importance of conductivity, chargeability & related 
computational tools

large time 
constant

small time 
constant



case studies
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Time-domain EM response of a UXO
UXO

not UXO

time

41

L1

L2 ≠ L3

L2 = L3

L1



Time-domain EM response of a UXO
UXO

not UXO

timetraditional approach: use inversion to get these and then
classify by comparing L(t) with ordnance library
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L1

L2 ≠ L3

L2 = L3

L1



Survey and system

UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above seabed: ~1 m
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Data

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4

UXO

Receiver 1

Receiver 12

cr
os

s-
tra

ck
along-track

moving
direction
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time



Data
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4



Data
UXO

Receiver 1

Receiver 12
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moving
direction
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4



Can we classify directly from EM data?

Convolutional neural networks (CNNs)
● Convolutional filters look at spatial / temporal 

features in the data 

Training EM data for UXO classification: 
● Available library of ordnance objects with 

polarizations
● Fast geophysical simulations

48
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

input

output

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Convolutional Neural Networks (CNNs)

Neural network

Supervised classification problem
provided data with labels, construct a function (network) that outputs labels given input data

predicted

true

Features   Input  
Class 
probabilities

Image 
segmentation

49



Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem?

predicted

true

Input  Features   Neural network
Class 
probabilities

nx

nr
x

50



Defining label masks

Magnitude for each transmitter
Sum of 
magnitudes

Label mask 

color is different 
for each class

threshold

along track 
position (nx)

re
ce

iv
er

 n
um

be
r (

nr
x) T1 T3T2 T4

along track 
distance (m)

cr
os

s 
tr

ac
k 

di
st

an
ce

 (m
)

send back to footprint
of system
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For time channel #5



Application to a line of data

Input features are created by using a sliding window:

cr
os

s 
tra

ck
 (m

)

along track (m)

UXO

52



Application to a line of data

Input features are created by using a sliding window:

cr
os

s 
tra

ck
 (m

)

along track (m)

sliding window
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Application to a line of data

Input features are created by using a sliding window:

cr
os

s 
tra

ck
 (m

)

along track (m)

Neural network output (class)

54



Application to a line of data

Input features are created by using a sliding window:

cr
os

s 
tra

ck
 (m

)

along track (m)
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Application to a line of data

Single acquisition line with three objects (classification results)

cr
os

s 
tra

ck

along track

Input features are created by using a sliding window:

cr
os

s 
tra

ck
 (m

)

along track (m)
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Training dataset: dipole forward model

7 classes:
● background
● 155 mm
● 105 mm
● 81 mm
● 60 mm
● 40 mm
● clutter

# of realizations:
● Training (multi-class): 400,000
● Validation: 10,000

Randomly assign:
● Target class
● Location
● Orientation
● Noise level: approximate from background 

areas in the field data

3 m 

2.5 x W 
0.5 m

57W - width of the system

1.5 x W



Clutter design
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Physics-based parameterization of EM 
decay:

9 parameters in total:

1. Estimate values for UXOs in 
ordnance library

2. Define a distance threshold
3. Fill the remaining space with clutter 

objects



Field data - Sequim Bay test site (2022)

● 7 acquisition lines

● Current workflow requires seawater response removed

● Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)
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Get correlated noise using a binary classifier

60get spatially correlated noise from this subset of field data 

object



Classification map (output of CNN)
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Predicted labels vs truth labels - field data

predicted label
ground truth
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Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO
● Classified to closest object in training dataset 



UXO classification

Key points:
● image-segmentation architecture
● clutter design and correlated noise are important

Some limitations:
● not trained to handle multiple objects in the same window
● objects used to generate synthetic data should be close to the objects on the 

field

Future work: 
● explore multi-target scenario (maybe instance segmentation)
● combining with traditional approach
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important problems
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Electrical conductivity can be a diagnostic physical property in many settings

Electromagnetic methods can be useful across a wide range of scales 

Numerical tools for simulation, inversion, machine learning enable understanding of 
physical responses, invaluable for interpretation of data 



Thank you! 
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lheagy@eoas.ubc.ca

simpeg.xyz 

bit.ly/heagy-2024-saga 
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https://simpeg.xyz/
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