

# an open-source framework for simulation and parameter estimation in geophysics

Lindsey Heagy<sup>1</sup>, Santiago Soler<sup>1</sup>, Joseph Capriotti<sup>2</sup>, Devin C. Cowan<sup>1</sup>, Dominique Fournier<sup>3</sup>, Seogi Kang<sup>4</sup>, Rowan Cockett<sup>5</sup>, and Douglas W. Oldenburg<sup>1</sup>

<sup>1</sup>University of British Columbia – Geophysical Inversion Facility

<sup>2</sup>Colorado School of Mines

<sup>3</sup>Mira Geoscience

<sup>4</sup>University of Manitoba

<sup>5</sup>Curvenote Inc

# applications



in all... need to "image" the subsurface non-invasively

## generic geophysical experiment





# geophysical experiments



ground or borehole

#### often on large scales



Yuba River

Resistivity (Ωm)

American River Cosumnes River Mokelumne River Stanislaus River Tuolumne River Chowchilla River

## statement of the inverse problem

#### Given

- observations:  $d_j^{obs}$ , j = 1, ..., N
- uncertainties:  $\epsilon_i$
- ability to forward model:  $\mathcal{F}[m] = d$



Find an Earth model that fits those data and a-priori information





# inverse problem

The inverse problem is ill-posed

- non-unique
- ill-conditioned

Any inversion approach must address these issues.



# inverse problem

Prior information important to constrain the inversion

- geologic structures
- boreholes
- reference model
- bounds
- physical properties
- other geophysical data
- ...



# need a framework for inverse problem

Tikhonov (deterministic)

Bayesian (probabilistic)

Find a single "best" solution by solving

optimization

minimize  $\phi = \phi_d + \beta \phi_m$ 

subject to  $m_L < m < m_H$ 

Two approaches:

Find a particular solution that maximizes  $P(m|d^{obs})$ 

Use Bayes' theorem

 $P(m|d^{obs}) \propto P(d^{obs}|m)P(m)$ 

 $\begin{cases} P(m): \text{ prior information about } m \\ P(d^{obs}|m): \text{ probability about the data errors (likelihood)} \\ P(m|d^{obs}): \text{ posterior probability for the model} \end{cases}$ 

(a) Characterize  $P(m|d^{obs})$ 

MAP: (maximum a posteriori) estimate

 $\begin{cases} \phi_d: \text{ data misfit} \\ \phi_m: \text{ regularization} \\ \beta: \text{ trade-off parameter} \\ m_L, m_H: \text{ lower and upper bounds} \end{cases}$ 

# flow chart for the inverse problem

- iterative process to obtain solution
- each component requires evaluation, adjustment by user
- opportunities for research within each component





Simulation and parameter estimation in geophysics

common framework for simulations & inversions accelerate research: build upon others work facilitate reproducibility of results build & deploy in python open-source





#### Simulation and Parameter Estimation in Geophysics

An open source python package for simulation and gradient based parameter estimation in geophysical applications.

#### Geophysical Methods

Contribute to a growing community of geoscientists building an open foundation for geophysics. SimPEG provides a collection of geophysical simulation and inversion tools that are built in a consistent framework.

- Gravity
- Magnetics
- · Direct current resistivity
- · Induced polarization
- Electromagnetics
  - Time domain
  - $\circ \ \ \text{Frequency domain}$
  - Natural source (e.g Magnetotellurics)
  - Viscous remanent magnetization
- · Richards Equation



https://simpeg.xyz

## open development: how contributions get included

# Submit proposed changes (Pull Request)



SimPEG community + maintainers review changes



Ensure existing unit tests pass and changes are also tested



codecov

86%

maintainers





S. Soler J. Capriotti

https://github.com/simpeg/simpeg

### testing

mathematical properties



analytic solutions, convergence criteria

code comparisons

```
vector identity: \nabla \cdot \nabla \times \vec{v} = 0
```

[2]: v = np.random.rand(mesh.nE)
np.all(mesh.faceDiv \* mesh.edgeCurl \* v == 0)

[2]: True

confidence





#### user tutorials

growing library of training materials:

- parameter choices in setting up forward simulations, inversions, e.g.mesh design, regularization parameters
- basic, intermediate, and advanced forward simulation and inversion approaches
- understanding SimPEG objects





D. Cowan S. Soler



https://simpeg.xyz/user-tutorials

# flow chart for the inverse problem



# electromagnetics: basic equations (quasi-static)

|                                | Time                                                           | Frequency                                                                               |
|--------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Faraday's Law                  | $ abla 	imes ec{e} = -rac{\partial ec{b}}{\partial t}$        | $ abla 	imes ec{E} = -i\omega ec{B} rac{\partial ec{\partial}}{\partial ec{\partial}}$ |
| Ampere's Law                   | $ abla 	imes ec{h} = ec{j} + rac{\partial ec{d}}{\partial t}$ | $oldsymbol{ abla} 	imes ec{H} = ec{J} + i\omega ec{D}  ec{J}$                           |
| No Magnetic Monopoles          | $ abla \cdot ec{b} = 0$                                        | $\nabla \cdot \vec{B} = 0$                                                              |
| Constitutive                   | $ec{j}=\sigmaec{e}$                                            | $ec{J}=\sigmaec{E}$                                                                     |
| Relationships (non-dispersive) | $ec{b}=\muec{h}$                                               | $ec{B} = \mu ec{H}$                                                                     |
| (11011-0150615146)             | $ec{d}=arepsilonec{e}$                                         | $ec{D}=arepsilonec{E}$                                                                  |

<sup>\*</sup> Solve with sources and boundary conditions

## electromagnetics: frequency domain

Continuous equations

$$\nabla \times \vec{E} + i\omega \vec{B} = 0$$
$$\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{J}_s$$
$$\hat{n} \times \vec{B}|_{\partial\Omega} = 0$$

Finite volume discretization

$$\mathbf{C}\mathbf{e} + i\omega\mathbf{b} = 0$$
$$\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{b} - \mathbf{M}_{\sigma}^{e}\mathbf{e} = \mathbf{M}^{e}\mathbf{j}_{s}$$

Eliminate **b** to obtain a second-order system in **e** 

$$\underbrace{(\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C} + i\omega\mathbf{M}_{\sigma}^{e})}_{\mathbf{A}(\sigma,\omega)}\underbrace{\mathbf{e}}_{\mathbf{u}} = \underbrace{-i\omega\mathbf{M}^{e}\mathbf{j}_{\mathbf{s}}}_{\mathbf{q}(\omega)}$$



## solving a FDEM problem



```
\omega = 2 * pi * frequency
                                       C = mesh.edge_curl
                                       Mfµi = mesh.get_face_inner_product(1/mu_0)
                                       Me\sigma = mesh.get_edge_inner_product(sigma)
                                                                                                                  Tensor
(\mathbf{C}^{\top}\mathbf{M}_{\mu^{-1}}^{f}\mathbf{C} + i\omega\mathbf{M}_{\sigma}^{e}) \underbrace{\mathbf{e}}_{\mathbf{u}}
                                       A = C.T @ Mf\mu i @ C + 1j * \omega * Me\sigma
                                       Ainv = Solver(A) # acts like A inverse
                                       Me = mesh.get_edge_inner_product()
                     =-i\omega\mathbf{M}^{e}\mathbf{j_{s}}
                                       q = -1j * \omega * Me @ js
                            \mathbf{q}(\omega)
                                                                                                                  OcTree
                                       u = Ainv @ q
```



from simpeg import electromagnetics

example: airborne electromagnetics





example: airborne electromagnetics



--- background

- 0.1 S/m - 1.0 S/m

 $10^{-6}$ 

10<sup>-7</sup>

# example: airborne electromagnetics



background

0.1 S/m 1.0 S/m

 $10^{-6}$ 

 $10^{-7}$ 

#### sensitivities

For inverse problem, need sensitivities (and adjoint)

$$\mathbf{J} = \frac{\partial \mathcal{F}[\mathbf{m}]}{\partial \mathbf{m}}$$
$$= \frac{\partial \mathbf{P}(\mathbf{u}, \omega)}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{m}}$$

where the derivative of the fields (**u**) is computed implicitly (requires a solve)

$$\frac{\partial \mathbf{A}(\sigma, \omega) \mathbf{u}^{\text{fixed}}}{\partial \mathbf{m}} + \mathbf{A}(\sigma, \omega) \frac{\partial \mathbf{u}}{\partial \mathbf{m}} = 0$$

J is a large, dense matrix → compute products with a vector if memory-limited

# flow chart for the inverse problem

What do we need for inversion?

minimize 
$$\phi = \phi_d + \beta \phi_m$$
  
subject to  $m_L < m < m_H$ 

#### From the simulation

- adjoint sensitivity times a vector
- sensitivity times a vector

#### Inversion components:

- define a model norm
- perform optimization



## inversion as an optimization problem

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$
s.t.  $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$ 

data misfit

$$\phi_d = \|\mathbf{W}_d(\mathcal{F}(\mathbf{m}) - \mathbf{d}^{\text{obs}})\|^2$$

uncertainties captured in W

$$\mathbf{W}_d = \operatorname{diag}\left(\frac{1}{\epsilon}\right)$$

$$\epsilon_j = \% |d_j^{\text{obs}}| + \text{floor}$$

typical model norm

$$\phi_m = \alpha_s \int_V w_s (m - m_{\text{ref}})^2 dV + \alpha_x \int_V w_x \frac{d(m - m_{\text{ref}})^2}{dx} dV$$
smallness first-order smoothness

discretize

$$\phi_m = \alpha_s \|\mathbf{W}_s(\mathbf{m} - \mathbf{m}_{ref})\|^2 + \alpha_x \|\mathbf{W}_x(\mathbf{m} - \mathbf{m}_{ref})\|^2$$

# solving the optimization problem

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$
s.t.  $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$ 

standard approach: Gauss Newton–CG + β-cooling strategy



# different flavours of inversion & research opportunities

#### Two examples:

- Sparse & compact norms
- Using a GMM in the model norm



example 1: sparse / compact norms

## sparse / compact norms with IRLS



$$\phi_m = \alpha_s \int_V w_s |m - m_{\text{ref}}|^{p_s} dV + \alpha_x \int_V w_x \left| \frac{d(m - m_{\text{ref}})}{dx} \right|^{p_x} dV$$

#### Fournier et al, 2019

#### Magnetic vector inversion (MVI)



#### inversion results: cross-section



## sparse / compact norms with IRLS



$$\phi_m = \alpha_s \int_V w_s |m - m_{\text{ref}}|^{p_s} dV + \alpha_x \int_V w_x \left| \frac{d(m - m_{\text{ref}})}{dx} \right|^{p_x} dV$$

#### Magnetic vector inversion (MVI)



#### inversion results: cross-section



## sparse / compact norms with IRLS

$$\phi_m = \alpha_s \int_V w_s |m - m_{\text{ref}}|^{p_s} dV + \alpha_x \int_V w_x \left| \frac{d(m - m_{\text{ref}})}{dx} \right|^{p_x} dV$$

2017

developed in potential fields

adapted to time-lapse electromagnetics: groundwater



Northing (m)



2019

difference.

L0 time constraint

29

# inversion

example 2: using a gaussian mixture model in the

### Using a Gaussian Mixture Model in the model norm

Example: Carbon mineralization – Rocks that have been serpentinized (altered) can react with CO<sub>2</sub> to from carbonated minerals. Reactions change physical properties



## Using a Gaussian Mixture Model in the model norm



Petrophysically and Geologically guided Inversion

Astic & Oldenburg, 2020







Define: 
$$\Phi_{\mathrm{small}}(\mathbf{m}) = -\log\left(\mathcal{P}_{\mathrm{small}}(\mathbf{m})\right)$$

# Using a Gaussian Mixture Model in the model norm

Soler et al., in prep

Petrophysically and Geologically guided Inversion

#### gravity gradiometry & magnetic data















Soler et al., in prep



# Other examples



## Summary



modular, open-source framework provides a foundation for research

- accelerates on-boarding
- eases technology transfer
- opens collaboration opportunities



## Thank you!





simpeg.xyz



lheagy@eoas.ubc.ca

UBC GIF research consortium:



























kaicalee



banesullivan



bluetyson





bsmithyman









domfournier Doug Oldenburg









mrocklin















codebase contributions from:























