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SUMMARY

‘We present an inversion technique that provides a robust means
for recovering complex, arbitrarily shaped subsurface targets
in inversions. By representing the level-set function as a
weighted sum of Radial Basis Functions, our approach elimi-
nates the need for a priori assumptions regarding target num-
ber or geometry, while significantly reducing the inversion pa-
rameter space. Synthetic examples using 2D DC resistivity
surveys demonstrate that the method effectively reconstructs
complex geological features. Moreover, the framework is in-
herently adaptable to 3D problems and is applicable to a wide
range of geophysical techniques, including magnetics, gravity,
electromagnetics, etc., thereby offering a flexible alternative to
traditional inversion strategies.

INTRODUCTION

Inversion of geophysical data is a crucial step in mineral ex-
ploration for identifying potential deposits. Mineral deposits
are rarely simple; they often exhibit curvy, irregular, and non-
smooth geometries. Accurately representing these complex
shapes is particularly important prior to drilling, but remains
a challenge for conventional inversion techniques.

Traditional least squares regularized inversion techniques strug-
gle with shapes that have sharp edges or small physical prop-
erty contrasts. An alternative is parametric shape-based in-
version, where shapes such as rectangular prisms (Belliveau
and Haber, |2023) or ellipsoids (McMillan et al., [2015) are de-
formed using a set of associated parameters to recover the tar-
get. Parametric methods offer the significant advantage of re-
ducing the total parameter space of the inverse problem. These
methods, however, have notable drawbacks: (1) they require
prior knowledge and initialization of the expected number of
targets; (2) they perform poorly if the target deviates from the
assumed parameterized shape.

Methods based on parametric basis functions have been shown
to be able to address these issues (Aghasi et al.l 2011} [Kadu
et al.l 2017} |Ozsar et all 2025). Instead of selecting a pre-
defined parameterized shape, approaches based on Radial Ba-
sis Functions (RBFs) offer the benefits of parametric inversion
without imposing strict shape constraints.

In this work, we adapt the RBF method originally described by
(Aghasi et al} [2011). We parameterize the model space with
a user-defined number of RBFs, each associated with scalar
weights that serve as the inversion parameters. The RBFs form
a level-set function that is binarized using a chosen indicator
function, which defines the width of the boundary between the
shape and background model helping to delineate the target
shape. The level-set is updated during the inversion to find a
model that fits the data. We validate this method using two
models. The first features two distinct targets: a rectangular

block and a sphere, while the second contains an anomaly with
an arbitrary shape. Both are imaged using a 2D DC Resistivity
(DCR) survey. The anomaly is treated as a level-set with fixed
conductivity. While we demonstrate the method in 2D DCR, it
is not limited to this setting. The approach is both method- and
dimension-agnostic and has been successfully applied to 3D
problems and other geophysical data types, including potential
field and seismic data (Kadu et al.,|2017).

LEVEL-SET APPROACH TO INVERSION

In geophysical inverse problems, a common goal is to deter-
mine the location, shape, and physical properties of a target
of interest in a heterogeneous background. Consider a general
inverse problem where the forward model is:

Fm)+n=d (1)

with m representing the discretized model, d the observed data,
and F the forward operator that maps the model to the data
space. Here, 1 is the noise in the data, usually assumed to be
Gaussian.

For level-set methods, we define the shape and location of the
target as the ¢ level-set of some function ¢ (x) = ¢ where x de-
notes the spatial coordinates in model space and c is a scalar
(usually taken to be zero). In cases where one or more anoma-
lous bodies in present in a background, the overall model space
can then be discretized as

m(x,p) = my(x) + H (¢ (x,p))mp(x) 2)

where my(x) is the background model and my(x) is the spatial
discretization of the anomalous bodies (or target shapes). Both
my and my, can be scalars or vectors representing the physical
property at each simulation mesh cell. Here, my, is multiplied
by a level-set function ¢(x,p), where p is a vector of param-
eters determined during inversion. The level-set is refined by
an indicator function, H, which defines the boundary of the
level-set domain Q (and hence the boundary of the target). A
general form of the indicator function is a step function:

Hx) 1, forx € Q
X) =
0, otherwise

For parametric level-set methods, the level-set function ¢ (x)
is represented in terms of a set of parameters p. In geometric
parameterizations (e.g., ellipses or prisms), p might include
the location of the shape’s centre, strike and dip extents, ro-
tation angles, etc. (Belliveau and Haber, [2023). In contrast,
this work eschews geometric parameterization of the level-set
function in favour of Radial Basis Functions (RBFs), given that
any smooth level-set function can be approximated by a lin-
ear combination of a set of sufficiently smooth RBFs (Aghasi
et al., 2011).
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We first define a set of RBFs, y/(r), centred on a grid with a
spacing (Xppf) that is sparser than the simulation grid (denoted
by x). Here, r = x — x.¢. Then, we represent the level-set
function as a weighted sum of these RBFs:

Nybf

o(x,p) = >_ s (Bllx—x7,) ©
j=1

where «; is the scaling parameter for the 7" RBF, and B is the
dilation parameter that determines its width (Figure |I[)

There are various choices of RBF, such as Gaussian, thin-plate
splines, multiquadratic, compactly-supported RBFs, etc. In
shape-reconstruction inverse problems, Gaussian and Wend-
land functions are commonly used. In this study, we employ
the C® Wendland function as it is shown to improve the spar-
sity of the system matrices, reduce the computational cost, and
recover sharper edges(Aghasi et al.,[2011). The C® Wendland
function is defined as

w(r)=(1-r8 (327 +252 +8r+1) )

where (1 —r)+ denotes that the term is non-zero only when
r<l.

Radial Basis Functions

* Wendland C°:
(1-r8(32r3 +25r2 4+ 8r+1)
—— Gaussian: e

Figure 1: Comparison between Gaussian and Wendland radial
basis functions. The compactness of Wendland RBF (green)
relative to Gaussian (red) RBF is useful in recreating sharper
features in the shape.

In general, one can choose to parameterize the level-set func-
tion with p = [a, B,X,;,7]. For even greater flexibility, further
parameters (such as stretching or skewing of each basis) can be
introduced (Ozsar et al.,|2025)). However, in this study, we only
treat « as the inversion parameters, keeping 8 and x4, fixed.
This choice reduces the dimensionality and improves numeri-
cal stability, since multiple pairs of [, 8] can yield the same
¢(x,p). A positive value of ¢; produces a positive “bump” in
the level-set function, with higher values increasing the sharp-
ness—thus aiding in resolving sharp corners or edges of a tar-
get.

We fix the dilation parameter as 8 = 1/A,;¢, where A, r is
the spacing between RBF centers (typically between 2 and 4
times the simulation mesh spacing). The RBF centers x,;, 7 are
defined on an equally spaced grid and remain fixed during the
inversion.

Another choice is the selection of the Heaviside function. Since

an ideal Heaviside function (a step function) is non-differentiable,

a smooth sigmoid approximation is preferred. A common choice
is a sigmoid function. We use a regularized C2 Heaviside func-
tion following |Aghasi et al.|(2011):

1 o<e
H[o(xe)] =30, o0>—-¢ (5
%_Q_%-yﬁsm(%‘p), 9l <e

Heaviside Function H(x) =2(1+% +sin (%))
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Figure 2: Heaviside function (eq|5) used to binarize the level
set function ¢ (x,p). Higher € increases the transition region of
the level set, improving numerical stability but reducing reso-
lution

Figure [2] illustrates this Heaviside function. Here, € controls
the steepness of the transition; choosing an appropriate € is
crucial, as an overly steep or flat transition can lead to numer-
ical instabilities (e.g., vanishing gradients).

We update € at each iteration and define it as a fraction of the
dynamic range of the level-set function (Kadu et al., [2017):

€= ’Y(¢max - ¢min) (6)

We include 7 as an additional inversion parameter.

Thus, the inverse problem is formulated as a minimization of
a misfit function with respect to the inversion parameters p =

[, 1]

min||F (m(x,p)) — d|| + 2R(p) @)

where A is a weighting factor for the regularization term R that
can be applied to the parameters p.

We then invert the data by solving the minimization problem
in equation (7) using a Gauss-Newton optimization method.
The necessary derivatives are computed automatically via the
autograd functionality in PyTorch (Ansel et al.| [2024).

EXAMPLES

We test our inversion approach using a synthetic 2D DC resis-
tivity survey. Two model scenarios are examined: one contain-
ing compact targets (a block and a circular target) in a halfs-
pace, and one where we aim to estimate depth to a basement
layer. The data are generated for a dipole-dipole configuration
with electrodes spaced every 50 m along x = [—1000, 1000]
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on a flat topography. All simulations and inversions are per-
formed using the SimPEG package (Heagy et al.l|2017;|Cock-
ett et al., [ 2015).

Example 1: Multiple Compact Targets

We consider the model shown in Figure Bh consisting of a 400
m X 200 m rectangular block centred at [250, -200], and a
circular target with a 150 m radius centred at [-600, -200] in
a homogeneous halfspace. This model is chosen to evaluate
the method’s ability to resolve multiple targets with different
geometries. The simulation mesh uses a 40 x 40 cell grid with
50 m spacing, resulting in 800 active cells.

First, we show an inverted model that is recovered using a reg-
ularized weighted least-squares method, starting from a half-
space model (Figure Bp). The inverted model is able to im-
age the targets in approximately the correct locations but the
boundaries of the shapes are smooth and difficult to interpret.
For the parametric RBF inversion, we initialize the model (Fig-
ure[3f) with 187 RBFs distributed uniformly every 150 m within
the active region of the mesh. The o parameters are drawn
from a normal distribution with a standard deviation of 0.1. To
reduce the influence of RBFs located below the survey’s sensi-
tivity (below z = —500 m), these are assigned a large negative
weight (o = —10) to dampen their impact on the inversion. No
explicit regularization is enforced (i.e., A = 0 in equation (7))
in the parametric RBF inversion, making this step necessary to
prevent overfitting. We initialize the ¥ parameter in equation
[ as 0.1, corresponding to 10% of the dynamic range of the
initial level-set function. The conductivity values for the back-
ground and targets, mo and m,, respectively, are set to match
those of the true model. Absent a-priori information, the phys-
ical properties can also be included as additional parameters in
the inversion.

Our inverted model (Figure BH) successfully recovers the ge-
ometry of both targets. The inversion forms a parametric level-
set function whose zero-level set delineates two distinct, com-
pact targets. This result highlights the advantage of our ap-
proach: it can recover multiple shapes without prior informa-
tion, unlike other parametric methods that require the number
of targets to be specified at initialization.

Example 2: Depth to Basement

To further evaluate our method, we test it on a model that simu-
lates depth-to-basement variations. The true model (Figure[dh)
represents a two-layer Earth with a higher-conductivity lower
layer (the “basement”) whose depth varies sinusoidally. At its
shallowest the basement is at z = —200 m and further along the
line the basement deepens up to z = —500 m. The simulation
mesh uses a 40 x 40 cell grid with 50 m spacing, resulting in
800 active cells.

For the RBF inversion (Figure[dp), the RBFs are arranged sim-
ilarly to the previous example but are spaced every 200 m, re-
sulting in 128 parameters to be estimated in the inversion. The
o parameters are again initialized from a normal distribution
with a standard deviation of 0.1. Here, RBFs located above
z = —600 m are assigned a large negative weight (& = —10)
to introduce a conductive layer in the initial model at a depth

where the survey starts losing sensitivity. This constraint is
necessary in the absence of explicit regularization.

The resulting inverted model (Figure ) effectively recovers
the undulating structure of the basement layer, despite the lim-
ited sensitivity of the survey at these depths.

CONCLUSION

In this work, we have demonstrated that the RBF level-set ap-
proach offers a flexible framework for geophysical inversion.
Our results highlight the method’s ability to recover arbitrarily
shaped features, as illustrated by both the compact targets in a
halfspace and the undulating basement in a two-layer model.
Importantly, the approach does not require a priori knowledge
of the number or geometry of targets, setting it apart from tra-
ditional parametric methods.

While our examples focused on 2D DC resistivity surveys, the
method is inherently generalizable and can be applied to 3D
problems as well as other geophysical techniques, including
magnetics, gravity, electromagnetic, and seismic methods.

Our future work will focus on combining this method with hy-
brid inversion techniques where a weighted least squares in-
version can be used to estimate any heterogeneity in the back-
ground physical properties (Belliveau and Haber, 2023). This
information can be incorporated into the model parameteriza-
tion (mg term in equation [2) or as a reference model for reg-
ularization. Another focus will be designing appropriate reg-
ularization in the RBF parametric model space. Early efforts
show that adding regularization is helpful in introducing a pri-
ori knowledge, particularly outside the core sensitivity region
of the surveys.

The inversion process still requires careful selection of bounds
and an appropriate initial model to ensure numerical stabil-
ity. In our experience, the RBF approach is more robust to
the initial model as compared to geometric parameterization
approaches. Additionally, resolving multiple bodies with dif-
ferent physical properties remains challenging without special-
ized modifications. Our ongoing research focuses on address-

ing this limitation by incorporating anisotropic RBFs with stretch-

ing and skewing (Ozsar et al.} 2025)) and associating a physical
property parameter with each RBF to recover multi-contrast
targets within a single level-set function.
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Figure 3: (a) True model for a synthetic example with a rect-
angular block and circular targets in a halfspace imaged us-
ing a 2D DCR survey. (b) Inverted model using regularized
weighted least-squares approach. (c) Initial model for the para-
metric RBF approach showing the simulation grid (black) and
RBF grid (red). Note the sparsity of the RBF grid. (d) In-
verted model using the parametric RBF approach without ex-
plicit regularization.
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Figure 4: (a) True model for a synthetic example of a two-
layer earth with an undulating basement layer. (b) Initial
model for the parametric RBF approach showing the simula-
tion grid (black) and RBF grid (red). (c) Inverted model for
the depth-to-basement scenario using the parametric RBF ap-
proach without explicit regularization.
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