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Abstract— To effectively characterize the impact of viscous
remanent magnetization (VRM) on the transient electromagnetic
response, we present a set of analytical expressions for the vertical
and radial VRM responses generated by a large circular loop over
a magnetically viscous half-space. For a step-off excitation, Néel
relaxation theory is used to express the VRM within the half-
space as the product of a static on-time magnetization and a time-
dependent aftereffect function. Through heuristic and empirical
approximations to the elliptic integral of the second kind, we are
able to convert Hankel integral-based expressions for static fields
into simplified analytical expressions. These were validated with
a numerical 1-D forward modeling code. Analytical expressions
show that VRM responses are largest near the transmitter wire,
and that at the center of a large loop, the strength of the VRM
response is inversely proportional to the loop’s radius. We also
present an estimate of the crossover time from which the VRM
signal starts to dominate the transient response. We found that
later crossover times were observed near the centers of large loops
and that crossover times were much earlier near the transmitter
wire. Also, the magnetic flux density has an earlier crossover time
compared with its time derivative. To lower or remove the VRM
response in an anticipated survey, our analytical expressions can
be used straightforwardly to choose an appropriate loop size,
identify the VRM response time window, and select an optimal
set of time channels.

Index Terms— Circular loop, crossover time, inductive
response, magnetic soil, time-domain electromagnetic (TEM)
systems, viscous remanent magnetization (VRM).

I. INTRODUCTION

MANY inductive source time-domain electromag-
netic (TEM) systems use a step-offlike excitation to

measure the response from a desired target. In lateritic soils,
sudden removal of the transmitter’s primary field induces
a time-dependent magnetic relaxation due to the presence
of superparamagnetic (SP) iron-oxide grains [1]–[5]. This
magnetic relaxation process is known as viscous remanent
magnetization (VRM), magnetic viscosity, or magnetic afteref-
fect [6]–[8]. The VRM experienced by a lateritic soil generates
a distinct transient response from that of a nonmagnetic
conductive soil. This response, termed the VRM response, can
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severely contaminate the TEM responses from conductive ore
bodies and unexploded ordnance items when lateritic soils are
prominent [1]–[5], [9]. Thus, to properly account for the VRM
signal in a set of TEM data, it is of practical interest to first
understand the behaviors of the VRM response.

Over the past decades, studies have been done to charac-
terize the VRM responses exhibited by magnetically viscous
soils [1]–[5], [9], [12]. It is well known that the induced
voltage within a receiver coil due to the VRM response has
a 1/t decay, where t is the time. Through experimental,
analytical, and numerical means, researchers have also shown
that measured VRM responses can be diminished by: sepa-
rating the receiver from the transmitter, increasing the size
of the transmitter loop, or elevating the sensor further above
the ground [1], [2], [5], [11], [13], [14]. Despite providing
significant insight, some details regarding the VRM response
and its computation appear elusive. Existing numerical and
analytical methods [2]–[4], [10], [11], [13]–[15] are both
complicated and lack sufficient insight regarding the quan-
titative dependence of the VRM response on the survey
geometry. In addition, the current understanding of the VRM
response is mainly drawn from the vertical component. With
the increasing development of advanced triaxial TEM sensors,
characterizing the radial VRM response is another necessary
and desirable aspect.

In this paper, we attempt to fill gaps left in previous studies
of the VRM response. We consider a circular transmitter
loop over a magnetically viscous half-space and derive sim-
plified analytical expressions for the vertical and horizontal
components of the VRM response. Both the magnetic flux
and its time derivative are considered for several survey
configurations. With the set of new formulas, we are able to
effectively model the transient VRM response directly as a
function of the survey’s geometric properties and predict the
times when the VRM signal dominates the TEM response.
As a result, quantitative information can easily be obtained to
characterize the amplitude and time range of transient VRM
responses.

The remainder of this paper is organized as follows.
In Section II, we review Néel relaxation theory in the fre-
quency and time domain. General formulation of the VRM
response is briefly presented in Section III. In Section IV,
we derive the analytical expressions for vertical and radial
static magnetic fields over an SP half-space. These are used to
predict the VRM response in Section V, where final analytical
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expressions are validated using a 1-D numerical modeling
code. In Section VI, we inspect the separability of inductive
and VRM responses over a conductive and magnetically vis-
cous half-space and present the analytical formulas to estimate
the crossover time. Section VII concludes this paper.

II. MAGNETIC VISCOSITY IN LATERITIC SOILS: A
REVIEW OF NÉEL RELAXATION THEORY

The magnetic viscosity observed in lateritic soils is com-
monly understood using thermal relaxation models [7] for a
collection of noninteracting SP single-domain grains [1], [3],
[4], [6], [8], [12]. In this section, we present mathematical
expressions derived by Néel [7] that will be used later to
predict the VRM response for a half-space.

A. Frequency-Dependent Magnetic Susceptibility

Magnetic susceptibility relates the induced magnetization
�M(ω) to the applied magnetic field �H(ω). For lateritic soils,

the magnetic susceptibility can be frequency-dependent [6],
[11], [19]

�M(ω) = χ(ω) �H (ω). (1)

By assuming that all SP grains are identical, the frequency-
dependent magnetic susceptibility for a theoretical sample can
be expressed using a Debye model [4], [6], [20]

χ(ω) = χ∞ + �χ

1 + iωτ
(2)

where τ is the time-relaxation constant for the collection of SP
grains, �χ represents the variation in magnetic susceptibility
over ω ∈ [0,∞] due to VRM, and χ∞ is the susceptibility
representing instantaneous magnetization within the sample.
The time-relaxation constant for the sample is given by [7]

τ = τ0 exp

(
Eb

kB T

)
(3)

where kB is the Boltzmann constant, T is the absolute tem-
perature, and τ0 ∼ 10−9 s is the “attempt time.” Eb represents
the energy barriers that maintain the preexisting orientations
of individual SP grains. In natural soils, Eb is not the same
for all SP grains, and instead forms a distribution. By (3),
lateritic soils are characterized by a distribution of time-
relaxation constants that is represented using a weighting func-
tion f (τ ). Applying the weighting function and integrating
over all Debye models (2), the soil’s magnetic susceptibility
is expressed as [4], [6], [20]

χ(ω) = χ∞ + �χ

∫ ∞

0

f (τ )

1 + iωτ
dτ. (4)

The majority of lateritic soil samples can be adequately
fit by assuming a log-uniform distribution of time-relaxation
constants between a set of finite limits [τ1, τ2] [6], [20]–[22].
The weighting function for a log-uniform distribution of time-
relaxation constants is defined by [3], [6], [14], [20]

f (τ ) =
⎧⎨
⎩

1

τ ln(τ2/τ1)
for τ1 ≤ τ ≤ τ2

0 otherwise.
(5)

Substituting (5) into (4), we obtain

χ(ω) = χ∞ + �χ

ln(τ2/τ1)

∫ τ2

τ1

1

τ (1 + iωτ)
dτ

= χ∞ + �χ

[
1 − 1

ln(τ2/τ1)
ln

(
1 + iωτ2

1 + iωτ1

)]
. (6)

Equation (6) represents an appropriate frequency-dependent
magnetic susceptibility model that can be used to characterize
most lateritic soils [4], [6], [11], [20], [21]. This model is used
to characterize magnetic viscosity in the 1-D numerical mod-
eling code [18]. It is easy to show, from (6), that χ(ω → 0)
= χ∞+�χ , and that χ(ω → ∞) = χ∞. Thus, �χ represents
the static magnetic susceptibility for the collection of SP
grains. In this paper, χ∞ will not play any significant role
when predicting the soil’s response as observations will be
made during the off-time.

B. Viscous Remanent Magnetization in Response
to Step-Off Excitation

Consider a step-off excitation where a dc field �H0, which
has been applied to a magnetically viscous sample since
t = −∞, is suddenly removed at t = 0. In this case, the
resulting magnetic relaxation at t > 0 can be expressed
as [3], [4], [7]

�M(t) = �χ �H0F(t) (7)

where F(t) is referred to as the aftereffect function. If all SP
grains are characterized by an identical time-relaxation con-
stant τ , then the aftereffect function is given by [3], [4], [7]

F(t) = e−t/τ . (8)

For a distribution of time-relaxation constants, (8)
becomes [3], [4], [7], [20]

F(t) =
∫ ∞

0
f (τ )e−t/τdτ (9)

where f (τ ) is the weighting function defined in (4). For a soil
characterized by a log-uniform distribution of time-relaxation
constants, substituting (5) into (9) leads to

F(t) = 1

ln(τ2/τ1)

∫ τ2

τ1

1

τ
e−t/τ dτ

= 1

ln(τ2/τ1)

[
Ei

( t

τ2

)
− Ei

( t

τ1

)]
(10)

where Ei is the exponential integral function. When obser-
vations are made at time τ1 � t � τ2, Ei(t/τ1) ≈ 0 and
Ei(t/τ2) ≈ −γ − ln(t/τ2), where γ ≈ 0.5772 is the Euler
constant [4]. Over this time period, the aftereffect function
can be approximated by

F(t) ≈ F̄(t) = 1

ln(τ2/τ1)

[ − γ − ln(t) + ln(τ2)
]
. (11)

By taking the derivative of (10), we obtain

d F(t)

dt
= 1

ln(τ2/τ1)

∫ τ2

τ1

− 1

τ 2 e−t/τdτ

= 1

ln(τ2/τ1)

[
e−t/τ1 − e−t/τ2

t

]
. (12)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COWAN et al.: TRANSIENT VRM RESPONSE FROM A LARGE CIRCULAR LOOP 3

At time τ1 � t � τ2, (12) simplifies to the following
expression:

d F(t)

dt
≈ d F̄(t)

dt
= − 1

ln(τ2/τ1)

1

t
. (13)

We see that (11) and (13) describe the transient VRM and
its time derivative as decaying proportional to ln(t) and 1/t
for τ1 � t � τ2, respectively. The 1/t dependence is often
observed in magnetic soil environments when ∂ B/∂ t is being
measured [1], [4], [6]. In Sections IV–VI, both approximate
time functions will be used to derive the expressions, which
characterize the VRM of our half-space to step-off excitation.

III. GENERAL FORMULATION OF THE VRM RESPONSE

IN THE ABSENCE OF SELF-DEMAGNETIZATION

In the absence of self-demagnetization, the magnetic anom-
aly observed outside a magnetized body can be expressed
using the following dyadic Green’s function [23]:

�B(�r , t) = μ0

4π

∫
V

∇∇ 1

|�r − �rs | · �M(�rs , t) dVs (14)

where r is the location of observation, rs are locations within
the volume being integrated, and t represents time.

For a step-off excitation, we can use (7) to represent the total
magnetization at any location within a magnetically viscous
Earth at t > 0. This is because any instantaneous magnetiza-
tion attributed to χ∞ is zero during the off-time. In most cases,
we can expect �χ(�rs) and the inducing field �H0(�rs) to vary
spatially. If the spatial distribution of time-relaxation constants
defined in expression (5) is uniform everywhere within the
magnetically viscous Earth, the aftereffect function F(t) is
spatially invariant and can be taken outside of the integral
in (14), which becomes

�B(�r , t) = μ0

4π
F(t)

∫
V

∇∇ 1

|�r − �rs | · �χ(�rs) �H0(�rs) dV

= �B(0)(�r)F(t) (15)

where �B(0)(�r) defines the static magnetic response of all
SP grains.

By taking the derivative of (15)

∂ �B(�r , t)

∂ t
= μ0

4π

d F(t)

dt

∫
V

∇∇ 1

|�r − �rs | · �χ(�rs) �H0(�rs) dV

= �B(0)(�r)
d F(t)

dt
. (16)

Thus, if �B(0)(�r) is known, the pairs of (10) and (15),
and (12) and (16) can be used to predict �B(�r, t) and
(∂ �B(�r , t)/(∂ t)) for the VRM response at t > 0. Next, we
present analytic expressions for �B(0)(�r).

IV. DERIVING THE STATIC MAGNETIC FIELDS OVER

A SUPERPARAMAGNETIC HALF-SPACE

We consider an SP half-space in which χ∞ = 0 in (6).
According to [24, eqs. (4.87) and (4.88)], for a circular
transmitter loop with a radius of a and at height h above

the surface, vertical and radial components of �B(0)(�r) can be
obtained by taking their limits as ω → 0, that is

B(0)
z (ρ, z) = μ0 Ia

2

(
�χ

2 + �χ

)

×
∫ ∞

0
λe−λ(z+h) J1(λa)J0(λρ)dλ (17)

and

B(0)
ρ (ρ, z) = −μ0 Ia

2

(
�χ

2 + �χ

)

×
∫ ∞

0
λe−λ(z+h) J1(λa)J1(λρ)dλ (18)

where I is the steady-state current, �χ is the static mag-
netic susceptibility due to the SP effects of the half-space,
μ0 = 4π × 10−7 H/m is the permeability of free space, ρ
is the radial distance from the loop’s center axis, and z is
the observation height above the surface. J0(·) and J1(·) are
the zeroth- and the first-order Bessel functions of the first
kind, respectively. Note that we are neglecting the primary
field contributions for equations found in [24].

We see that even for the static case, the vertical and radial
components of �B(0)(�r) involve solutions to complicated Han-
kel transforms in (17) and (18). Their general solutions have to
be obtained via numerical integrations [29], [30]. However, for
several cases of interest considered in Sections IV-A and IV-B,
we can derive analytic solutions or approximate solutions for
both the vertical component Bz(ρ, z) and radial component
Bρ(ρ, z).

A. Vertical Static Response for a Circular Transmitter
Loop Over a Superparamagnetic Half-Space

To solve the integral in (17), we introduce the following
identity [25]:∫ ∞

0
λe−λ(z+h) J1(λa)J0(λρ)dλ

= a

π

∫ π

0
[(z + h + iρ cos φ)2 + a2]−3/2dφ. (19)

A general analytical solution to (19) is difficult to derive. For
several special cases, however, working with the right-hand
side of the equation enables us to obtain some insightful field
expressions.

1) Large Circular Loop on the Earth’s Surface (h = 0):
Assume that the static response is examined close to the
Earth’s surface (z → 0). With Wolfram Mathematica’s online
integration code [26], the right-hand side of (19) for h, z = 0
can be expressed analytically, that is

lim
z→0

∫ ∞

0
λe−λz J1(λa)J0(λρ)dλ

= 2

πa

1√
a2 − ρ2

E

[
ρ2

ρ2 − a2

]
(20)

where E[x] is the complete elliptic integral of the second kind.
Substituting (20) into (17), we have the vertical static response
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Fig. 1. Comparison between G(ρ/a) and its approximation Q(ρ/a), for
various values of ρ/a < 1. A % error for selected values is provided.

on the Earth’s surface at radial distance ρ from the loop’s
center axis

B(0)
z (ρ, 0) = μ0 I

π

(
�χ

2 + �χ

)
1√

a2 − ρ2
E

[
ρ2

ρ2 − a2

]

= B(0)
z (0, 0)

⎛
⎝ 2

π

√
1 − (ρ

a

)2
E

[ (ρ
a

)2(ρ
a

)2 − 1

]⎞
⎠

= B(0)
z (0, 0) G

(ρ

a

)
(21)

where B(0)
z (0, 0) represents the static magnetic response of

the SP half-space at the loop’s center, and G is a function that
depends explicitly on (ρ/a).

For measurements inside the loop (ρ < a), we would like
to find an approximate solution for G that does not contain
the elliptic integral. At the center of the loop, ρ/a = 0 and
E[0] = π/2, (21) then simplifies to B(0)

z (0, 0) as expected.
As ρ → a, the static response approaches infinity. To preserve
these properties, we suggest an empirical function Q as

G
(ρ

a

)
≈ Q

(ρ

a

)
= 1 + 9

4π

( (ρ
a

)2

1 − (ρ
a

)2

)
for ρ < a.

(22)

This approximation is accurate to within 1% for values
ρ/a ≤ 0.8. For ρ/a > 0.8, the approximation increasingly
overestimates Q(ρ/a) (Fig. 1).

Combining (21) with (22), we have the analytical formula
for the vertical static response at any location (ρ < a, z = 0)
for a loop located on the Earth surface (h = 0)

B(0)
z (ρ, 0) ≈ μ0 I

2a

(
�χ

2 + �χ

) [
1 + 9

4π

( (ρ
a

)2

1 − (ρ
a

)2

)]
. (23)

2) Response Along the Transmitter’s Vertical Axis (ρ = 0):
When the transmitter loop is at height h and the observation
is along the vertical axis of the transmitter, i.e., at (ρ = 0, z),
the associated integral in (19) is reduced to an analytical

Fig. 2. Comparison between computations of the Hankel transform using
IIPBF adaptive quadrature and using the empirical expression from (27).
Comparisons are done for various values of 0 < z + h ≤ a/5, using a loop
radius of a = 20 m.

expression by setting ρ → 0

lim
ρ→0

∫ ∞

0
λe−λ(z+h) J1(λa)J0(λρ)dλ = a

(
1

(z + h)2 + a2

)3/2

.

(24)

Substituting (24) into (17) leads to the vertical static response

B(0)
z (0, z) = μ0m

2π

(
�χ

2 + �χ

)(
1

(z + h)2 + a2

)3/2

(25)

where m = πa2 I is the dipole moment of the transmitter.

B. Radial Static Response for a Large Circular Transmitter
Loop Over an SP Half-Space

Now, we look at the radial static response from a circular
transmitter loop over an SP half-space. According to (18), we
require a solution to the integral∫ ∞

0
λe−λ(z+h) J1(λa)J1(λρ)dλ. (26)

Although analytic solutions for (26) exist [25], they are
too complicated to develop straightforward relationships with
respect to the transmitter loop radius and observation locations.
However, for the special cases considered in the following,
we can have an approximate solution.

First, let us examine the behavior of (26). For z+h > 0, we
used the IIPBF adaptive quadrature package [28] to evaluate
the expression. Fig. 2 shows the results for several values of
z + h for a loop of radius a = 20 m. We observed that for
0 < z + h ≤ a/5, the numerical solutions with respect to ρ
behaved like a Cauchy distribution centered around ρ = a.
As z +h is decreased over the accepted range, the distribution
became narrow. Therefore, invoking the probability density
function for a Cauchy distribution, we proposed a heuristic
approximation to (26) as

∫ ∞

0
λe−λ(z+h) J1(λa)J0(λρ)dλ ∼

[
πaγ

(
1 +

(ρ − a

γ

)2
)]−1

(27)
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where an empirical function for γ is given by

γ = 2(z + h)

(
2

π

)3/2

. (28)

One sees that in Fig. 2, the results from (27) match well with
those using IIPBF adaptive quadrature. For z + h → 0, (26)
approaches the Dirac delta function δ(x)

lim
z+h→0

∫ ∞

0
λe−λ(z+h) J1(λa)J1(λρ)dλ = δ(a − ρ)

a
(29)

which can be shown with the weighted orthogonality property
of the Hankel transform [27].

By combining (18) and (27), the radial static response of
the SP half-space for 0 < z + h ≤ a/5 is approximated by

B(0)
ρ (ρ, z) ∼ −μ0 I

2

(
�χ

2 + �χ

)[
πaγ

(
1 +

(ρ − a

γ

)2
)]−1

.

(30)

It should be noted that although (30) provides a reasonable
approximation, it cannot be used to show that B(0)

ρ (ρ → 0,
z) = 0 exactly. This property was obtained from (18), since
J1(0) = 0.

V. VRM RESPONSE FROM A LARGE CIRCULAR

TRANSMITTER LOOP

Having obtained the approximations for the aftereffect
function and the analytical expressions for the static fields
in several cases, we now look at the VRM response with
(15) and (16) over an SP half-space for τ1 � t � τ2.

A. Vertical VRM Response From a Large Circular
Transmitter Loop

1) Large Circular Loop on the Earth’s Surface (h = 0):
With expressions (11) and (23), the vertical VRM response
at any location (ρ < a, z = 0) at time τ1 � t � τ2 is
approximated according to (15)

Bz(ρ, 0, t) ≈ μ0 I

2a

(
�χ

2 + �χ

)[
1 + 9

4π

( (ρ
a

)2

1 − (ρ
a

)2

)]
F̄(t).

(31)

Similarly, after the substitution of (13) and (23) into (16),
we have

∂ Bz(ρ, 0, t)

∂ t
≈ μ0 I

2a

(
�χ

2 + �χ

)[
1+ 9

4π

( (ρ
a

)2

1 − (ρ
a

)2

)]
d F̄(t)

dt
.

(32)

Both (31) and (32) reveal that the vertical VRM response
depends upon the ratio of ρ/a. When an observation is made
toward the center of a loop (say ρ/a ≤ 0.5), the response
tends to be small and vary minimally with respect to ρ. This
agrees with the results obtained by others [1], [2]. When an
observation is made toward the edges of the loop, the VRM
response can increase in magnitude rapidly as ρ increases and
ρ/a → 1. Fig. 3 shows the variation in the VRM response
when ρ = 0, 10, and 18 m for a loop of radius a = 20 m.

Fig. 3. Vertical VRM response for a large circular loop of radius a = 20 m
on the Earth’s surface, at radial distance ρ from the loop’s center, using
properties �χ = 0.01, τ1 = 10−8 s, and τ2 = 10 s. This plot compares
expressions (31) and (32) to values obtained using the EM1DTM code.
(a) Bz(t). (b) −∂Bz/∂t .

Meanwhile, the results of (31) and (32) match well with
those computed using the 1-D numerical code-EM1DTM [18].
In practice, measurements of B or ∂ B/∂ t are not acquired
directly on the Earth’s surface. Instead, data are typically
collected at heights less than 1 m off the ground. Therefore,
for a near-surface survey with a sufficiently large loop, we
should expect similar behavior to the case mentioned earlier
when a � z.

2) Response Along the Transmitter’s Vertical Axis (ρ = 0):
Using expressions (11), (15), and (25), we have the VRM
response at time τ1 � t � τ2

Bz(0, z, t) ≈ μ0m

2π

(
�χ

2 + �χ

)(
1

(z + h)2 + a2

)3/2

F̄(t).

(33)

Similarly, using expressions (13), (15), and (25), we obtain

∂ Bz(0, z, t)

∂ t
≈ μ0m

2π

(
�χ

2 + �χ

)(
1

(z + h)2 + a2

)3/2
d F̄(t)

dt
.

(34)

Equations (33) and (34) show that the VRM response becomes
smaller in magnitude when the size of the loop or the total
elevation of z + h increases. This matches analytic results and
field observations made by others [1], [2], [11]. For a dipole
source (a � z + h), the magnitude of the VRM response is
proportional to (z + h)−3. For z + h = 0 and m = πa2 I ,
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Fig. 4. Vertical VRM response along the transmitters vertical axis of
symmetry, using a radius of a = 0.2 m. Responses were predicted for several
values z + h, using properties �χ = 0.01, τ1 = 10−8 s, and τ2 = 10 s.
Plots compare (33) and (34) to values obtained using the EM1DTM code.
(a) Bz(t). (b) −∂Bz/∂t .

expressions (33) and (34) are equivalent to expressions (31)
and (32) at ρ = 0. The VRM response observed for a loop of
radius a = 0.2 m is shown in Fig. 4 when z + h = 1, 2, and
4 m. Again, both the analytical and numerical results agree
well.

B. Radial VRM Response From a Large Circular
Transmitter Loop

Using (11), (15), and (30), we express the radial VRM
response for 0 < z + h ≤ a/5 at time τ1 � t � τ2 as

Bρ(ρ, z, t) ∼ −μ0 I

2

(
�χ

2 + �χ

)

×
[
πaγ

(
1 +

(ρ − a

γ

)2
)]−1

F̄(t). (35)

And using expressions (13), (15), and (30), we have

∂ Bρ(ρ, z, t)

∂ t
∼ −μ0 I

2

(
�χ

2 + �χ

)

×
[
πaγ

(
1 +

(ρ − a

γ

)2
)]−1

d F̄

dt
. (36)

Equations (35) and (36) describe how the geometrical para-
meters can affect the response, although they are a bit more
complicated than the expressions for the vertical component.

Fig. 5. Comparison between EM1DTM and empirical functions (35) and (36)
for the radial VRM response with a loop of radius a = 20 m. The response was
predicted for z+h = 20 m using physical properties �χ = 0.01, τ1 = 10−8 s,
and τ2 = 10 s. (a) −Bρ(t). (b) d Bρ/dt .

Near the center of the loop, one can see that the radial
component of the VRM response is small. As observations
are made closer to the transmitter wire, the radial component
of the VRM response increases significantly. Recall that γ
given by (28) is a function of z + h. Therefore, the effect of
raising the receiver off the ground can be generated by raising
the transmitter off the ground. This effect was observed during
field observations for various SiroTEM configurations [1].

Fig. 5(a) and (b) shows the radial VRM response for
ρ = 10, 15, and 18 m given a loop of radius a = 20 m
and z + h = 1 m. The analytical and the EM1DTM results
overlap well. Similar to the vertical components, the VRM
response of Bρ(t) decays in ln(t), and ∂ Bρ/∂ t decays in 1/t .

VI. RESPONSE OVER A CONDUCTIVE AND

MAGNETICALLY VISCOUS HALF-SPACE

The magnetic susceptibilities of lateritic soils are gener-
ally low (χ < 0.01) [15], [29], [30]; as such, the mag-
netic properties of lateritic soils do not have a significant
impact on the inductive response. Some studies showed that
effects of conductivity may be neglected when considering
the soil’s VRM response [3], [14], [15]. Some have suggested
that the inductive and VRM responses from lateritic soils
are approximately separable [1], [4], [14]. In this section,
we will test this assumption using the 1-D numerical modeling
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code (EM1DTM) [18] over a half-space model. Given that
the inductive and VRM responses are separable, we present
the critical time analysis by comparing the vertical inductive
and VRM responses with respect to the loop’s radius and
observation distances.

A. Separation of Inductive and VRM Responses

Consider a conductive and magnetically viscous half-space
with σ = 0.01 S/m, χ∞ = 0, �χ = 0.001, τ1 = 10−8

s, and τ2 = 10 s. Fig. 6 shows the inductive, the VRM,
and the total transient responses computed by EM1DTM
for a loop of radius a = 20 m on the surface. One sees
that for the vertical and radial components after sufficient
time, the observed response becomes dominated by the VRM
response, whereas the early times appear to be dominated by
the inductive response. The numerical results verify that the
total response for a conductive and magnetically viscous Earth
can be well approximated as the sum of the individual induc-
tive and VRM responses and support the observations made
by [1], [3], [4], [14], [15], [29], and [30]. Overall, we
found that for sufficiently small dc susceptibilities (χ∞+
�χ < 0.01), inductive and VRM responses could be predicted
independently. For larger values of χ∞ + �χ , magnetic
properties can affect the inductive response. On the other hand,
the VRM response was insensitive to changes to the half-
space conductivity. Bear in mind that the value of χ∞ has
no effect on the VRM response as the contribution made by
instantaneous magnetization during the off-time is zero.

B. Estimating the Crossover Time of VRM Responses

Nabighian [17] showed that for a step-off excitation, to the
first-order, the quasi-static inductive response within a large
circular transmitter loop on the surface of a conductive half-
space would approach the following expression asymptotically
after sufficient time:

Bz(t) ≈ Iσ 3/2μ
5/2
0 a2

30
√

π
t−3/2 (37)

and that

∂ Bz

∂ t
≈ − Iσ 3/2μ

5/2
0 a2

20
√

π
t−5/2 (38)

where a is the loop’s radius, σ is the Earth’s conductivity,
and μ0 is the permeability of free space. Note the inductive
response and its derivative decay according to t−3/2 and
t−5/2, respectively. Furthermore, the strength of the inductive
response is proportional to a2.

As the inductive and VRM responses can be predicted
independently, we want to inspect how both responses change
over time. Refer to Fig. 6. We observe that the decay rate
of the total response starts to change roughly at a time when
the inductive curve intersects with the VRM curve. Thus, by
setting up the ratio between the vertical inductive response
B(I N D)

z and the vertical VRM response B(V RM)
z with (11),

Fig. 6. Additivity of the inductive and VRM responses for a loop of radius
a = 20 m at location (ρ, z) = (10 m, 1 m). The half-space was given physical
properties: σ = 0.01 S/m, χ∞ = 0, �χ = 0.001, τ1 = 10−8 s, and τ2 = 10 s.
(a) Bz(t). (b) −Bρ(t). (c) −∂Bz/∂t . (d) ∂Bρ/∂t .

(31), and (37)

RB = B(I N D)
z

B(V RM)
z

≈ ln(τ2/τ1)

15 Q(ρ/a)
√

π

(
2 + �χ

�χ

)

×
(

t−3/2

−γ − ln(t/τ2)

)
(μ0σ)3/2a3 (39)

and for the derivative with (13), (32), and (38)

Rd B/dt = ∂ Bz/∂ t(I N D)

∂ Bz/∂ t(V RM)

≈ ln(τ2/τ1)

10 Q(ρ/a)
√

π

(
2 + �χ

�χ

)
(μ0σ)3/2a3t−3/2 (40)

we can estimate the time at which magnetic viscosity begins
to dominate the vertical observed response. Such times are
called the crossover time. Let tα denote the crossover time
for Bz , which solves RB = 1 in (39). And let tβ denote the
crossover time for ∂ Bz/∂ t , which solves Rd B/dt = 1 in (40).
For ∂ Bz/∂ t , the crossover time tβ is straightforward

tβ ≈
[

ln(τ2/τ1)

10 Q(ρ/a)
√

π

(
2 + �χ

�χ

)]2/3

μ0σa2. (41)

Equation (41) states that by increasing the radius of a trans-
mitter loop, the expected time tβ at which ∂ Bz/∂ t becomes
dominated by the VRM response is pushed to a later time.
At the center of any loop, Q = 1 and tβ ∝ σa2. Because
tβ ∝ Q−2/3, as an observation moves toward the edge of the
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Fig. 7. Lower branch of the Lambert W function W [−1, x] for
values −1/e ≤ x ≤ 0.

Fig. 8. Vertical transient response at the center of a set of transmitter loops
with varying radii, located on the Earth’s surface. EM1DTM was used to
predict the responses for a half-space with physical properties: σ = 10−2 S/m,
�χ = 0.001, τ1 = 10−8 s, and τ2 = 10 s. (a) Bz(t). (b) −∂Bz/∂t .

loop, we expect tβ to decrease, and thus, the VRM response
starts to dominate earlier.

For Bz(t), the VRM response begins to dominate at time

tα ≈ tβ

(
− W

[
− 1,−

( tβ
τ2

eγ
)3/2

])−2/3

≤ tβ (42)

where W [−1, x] is the lower branch of the Lambert W
function [31], γ = 0.5772 is the Euler constant, and tβ is
given in (41). W [−1, x] for values −1/e ≤ x ≤ 0 is shown
in Fig. 7. Its derivation can be found in the Appendix.

Equation (42) shows that tα is a monotonic increasing
function with respect to tβ . Although the dependence of
tα on a and Q(ρ/a) is not straightforwardly represented

Fig. 9. Vertical transient response at off-axis locations ρ, for a loop of
radius a = 20 m, located on the Earth’s surface. EM1DTM was used to
predict the responses for a half-space with physical properties: σ = 10−2 S/m,
�χ = 0.001, τ1 = 10−8 s, and τ2 = 10 s. (a) Bz(t). (b) −∂Bz/∂t .

in (42), we can qualitatively infer that TEM instruments, which
measure Bz(t), are much more affected by the VRM response
than instruments, which measure ∂ Bz/∂ t . It can be shown that
tα � tβ for tβ � τ2eγ . Fig. 8 shows the vertical transient
responses calculated using the EM1DTM at the center of a
transmitter loop when the radius a = 10, 20, and 40 m. tα and
its corresponding value Bz(t) were calculated using (11), (31),
(37), and (42); tβ and its corresponding value d Bz/dt were
calculated using (13), (32), (38), and (41). It confirms that tα
and tβ increase with respect to a, and that tα ≤ tβ .

Consider the vertical transient responses in Fig. 9 at various
radial locations ρ for a transmitter loop with radius a = 20 m.
tα and its corresponding value Bz(t) were calculated using
(11), (31), (37), and (42); tβ and its corresponding value
∂ Bz/∂ t were calculated using (13), (32), (38), and (41).
Similarly, we observe that tα and tβ decrease with respect
to ρ, and that tα ≤ tβ . Recall that Q in (22) increases as
ρ → a. Thus, when observations are made closer to the
transmitter loop, the VRM response will not only increase
but will also dominate the total observed transient response
at earlier times. This is consistent with the observation that
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magnetic viscosity is known to be most problematic near the
transmitter wire [1], [2], [11].

Figs. 8 and 9 demonstrate how (41) and (42) can be used
to estimate the crossover times (dashed lines) at which Bz(t)
and ∂ Bz/∂ t within the loop become dominated by the VRM
response. The projection of tα and tβ on the corresponding
total response curve will appear earlier than the point of
maximum curvature on each log–log plot (also see Fig. 6).
Provided that a-priori information is supplied regarding the
Earth’s physical properties, (39)–(42) can provide some survey
guides in practice. For example, (39) and (40) can be used
to help adjust a loop size that renders the VRM response
negligible over a specified time range. With an estimated
crossover time, one can properly remove the VRM effects
during the late-time response.

VII. CONCLUSION

In this paper, we have presented the analytical formulas
for the transient VRM response generated by a large circular
loop over a magnetically viscous half-space for a step-off
excitation. Assuming that the soil’s magnetic viscosity is
represented by a collection of noninteracting SP grains [7]
and that magnetic fields are governed by the magnetostatic
law, we can express the VRM response and its derivatives as
the product of a static field and an aftereffect time function. We
approximated the true aftereffect function of the half-space by
using a log-uniform distribution of time-relaxation constants
to characterize the magnetic viscosity. As for the static fields,
we derived the associated expressions by simplifying and
approximating Hankel integrals for the vertical and radial
field components. Analytic expressions were verified with
the 1-D forward modeling code [18]. Both analytical and
numerical results showed excellent agreement for sufficiently
small magnetic susceptibilities.

Our analytic expressions explicitly reveal how the VRM
response depends upon geometric survey properties, such as
the transmitter loop’s size and the observation location within
the loop. For vertical VRM responses measured near the
surface, the ratio of ρ/a plays a major role in controlling
the magnitude. When ρ/a → 1, i.e., an observation is made
toward the edge of the loop, VRM responses can increase
significantly. Equivalently, strong VRM responses are expected
for smaller transmitter loops. For measurements along the axis
of the loop, the vertical VRM response can be diminished by
either increasing the sensor height or increasing the size of the
loop. For radial VRM responses, our empirical approximation
predicts that it is small near the center of the loop. As
observations are made closer to the transmitter wire, the
increased strength of radial VRM response can be damped
by increasing the sensor height. Characteristics of the VRM
response uncovered in the analytical expressions are consis-
tent with other field observations and numerical modeling
results [1]–[5], [13].

Furthermore, we have suggested an estimate of the crossover
time from which the response might be divided into early
inductive and late VRM stages. Increasing the size of a loop
can push the crossover time to a later time. On the other hand,

a near loop-edge observation tends to have an early crossover
time. Also, we found that the VRM response impacts on the
magnetic flux density B(t) at much earlier times than on its
time derivative d B/dt . Therefore, in regions where lateritic
soils are prominent, it may not be recommended to use TEM
systems that only measure the magnetic flux density, which are
potentially contaminated by the VRM signal across a larger
number of time channels.

Overall, our analytical expressions can serve as a convenient
design code for choosing an appropriate loop size and select-
ing an optimal range of observation times. This may prove
beneficial when attempting to reduce the VRM response or
pinpoint a certain time window where the VRM response can
be properly removed.

APPENDIX

We wish to solve expression (39) for RB = 1 to obtain
expression (42). This is equivalent to solving an expression of
the form

At−3/2 + ln t ≈ −γ + ln τ2 (A1)

where

A = ln(τ2/τ1)

15 Q(ρ/a)
√

π

(
2 + �χ

�χ

)
(μ0σ)3/2a3. (A2)

Changing the variable u = t−3/2, and with some algebra, we
can rewrite (A1) as

−3

2
Aue− 3

2 Au ≈ −3

2
Ae

3
2 (γ−ln τ2). (A3)

Solutions to an expression of the form xex = C are defined as
branches of the Lambert W function W [n, C], where n values
are integer values [31]. Therefore, the solutions un to (A3) are

un ≈ − 2

3A
W

[
n,−3

2
Ae

3
2 (γ−ln τ2)

]
. (A4)

We can use (41) and (A2) to show A = 2
3 t3/2

β . By replacing

un = t−3/2
n

t−3/2
n ≈ −t−3/2

β W
[
n,−t3/2

β e
3
2 (γ−ln τ2)

]

�⇒ tn ≈ tβ

(
− W

[
n,−

( tβ
τ2

eγ
)3/2

])−2/3

. (A5)

Real-valued solutions W [n, x] only exist for n = −1, 0 [31].
In addition, for tn to occur after the primary field has been
removed (tn ≥ 0), W [n, x] requires −1/e ≤ x ≤ 0. Thus,
by (A5)

−1/e ≤ −
( tβ

τ2
eγ

)3/2 ≤ 0

�⇒ e− 2
3 −γ ≈ 0.288267 ≥ tβ

τ2
≥ 0. (A6)

Recall that our choice in aftereffect function (11) is only
valid for τ1 � t � τ2. Therefore, the condition defined
in expression (A6) is reasonable under the assumption that
tβ � τ2. We evaluated (A5) for n = 0 and noticed the
solutions were t0 �� τ2. This violates our conditions for the
aftereffect function and is, therefore, not a valid solution.
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On the other hand, solutions of (A5) for n = −1 did not
violate conditions for the aftereffect function. The solutions
obtained using W [−1, x] consistently showed tα ≤ tβ . As a
result, the time tα, which solves RB = 1 in expression (39) is
given by

tα ≈ tβ

(
− W

[
− 1,−

( tβ
τ2

eγ
)3/2

])−2/3

≤ tβ. (A7)
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